toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author de la Croix, T.; Claes, N.; Eyley, S.; Thielemans, W.; Bals, S.; De Vos, D. pdf  url
doi  openurl
  Title Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene Type A1 Journal Article
  Year 2023 Publication Catalysis Science & Technology Abbreviated Journal Catal. Sci. Technol.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The dehydrogenation of long-chain alkanes to olefins and alkylaromatics is a challenging endothermic reaction, typically requiring harsh conditions which can lead to low selectivity and coking. More favorable thermodynamics can be achieved by using a hydrogen acceptor, such as ethylene. In this work, the potential of heterogeneous platinum catalysts for the transfer dehydrogenation of long-chain alkanes is investigated, using ethylene as a convenient hydrogen acceptor. Pt/C and Pt–Sn/C catalysts were prepared<italic>via</italic>a simple polyol method and characterized with CO pulse chemisorption, HAADF-STEM, and EDX measurements. Conversion of ethylene was monitored<italic>via</italic>gas-phase FTIR, and distribution of liquid products was analyzed<italic>via</italic>GC-FID, GC-MS, and 1H-NMR. Compared to unpromoted Pt/C, Sn-promoted catalysts show lower initial reaction rates, but better resistance to catalyst deactivation, while increasing selectivity towards alkylaromatics. Both reaction products and ethylene were found to inhibit the reaction significantly. At 250 °C for 22 h, TON up to 28 and 86 mol per mol Pt were obtained for Pt/C and PtSn<sub>2</sub>/C, respectively, with olefin selectivities of 94% and 53%. The remaining products were mainly unbranched alkylaromatics. These findings show the potential of simple heterogeneous catalysts in alkane transfer dehydrogenation, for the preparation of valuable olefins and alkylaromatics, or as an essential step in various tandem reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001104905100001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes T. de la Croix gratefully acknowledges the support of the Flanders Research Foundation (FWO) under project 11F6622N. D. De Vos is grateful to FWO for support of project G0D3721N, and to KU Leuven for the iBOF project 21/016/C3. S. Bals and N. Claes acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128- REALNANO). W. Thielemans and S. Eyley thank KU Leuven (grant C14/18/061) and FWO (G0A1219N) for financial support. Approved Most recent IF: 5; 2023 IF: 5.773  
  Call Number EMAT @ emat @c:irua:201010 Serial 8968  
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F. url  doi
openurl 
  Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
  Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol  
  Volume 12 Issue 22 Pages 6676-6686  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865542600001 Publication Date 2022-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:191389 Serial 7185  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Van Winckel, T.; Vlaeminck, S.E.; Al-Omari, A.; Bachmann, B.; Sturm, B.; Wett, B.; Takács, I.; Bott, C.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Type A1 Journal article
  Year 2019 Publication Environmental Science: Water Research & Technology Abbreviated Journal  
  Volume 5 Issue 10 Pages 1769-1781  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Deammonification systems are being implemented as cost- and resource-efficient nitrogen removal processes. However, their complexity is a major hurdle towards successful transposition from side- to mainstream application. Merely out-selecting nitrite oxidizing bacteria (NOB) or retaining anammox bacteria (AnAOB) does not guarantee efficient mainstream deammonification. This paper presents for the first time the interactions and synergies between kinetic selection, through management of residual substrates, and physical selection, through separation of solid retention times (SRTs). This allowed the formulation of tangible operational recommendations for successful deammonification. Activity measurements were used to establish retention efficiencies (η) for AnAOB for full-scale cyclones and rotating drum screens installed at a sidestream and mainstream deammonification reactor (Strass, Austria). In the sidestream reactor, using a screen (η = 91%) instead of a cyclone (η = 88%) may increase the capacity by up to 29%. For the mainstream reactor, higher AnAOB retention efficiencies achieved by the screen (η = 72%) compared to the cyclone (η = 42%) induced a prospective increase in capacity by 80–90%. In addition, the switch in combination with bioaugmentation from the sidestream made the process less dependent on nitrite availability, thus aiding in the outselection of NOB. This allowed for a more flexible (intermittent) aeration strategy and a reduced need for tight SRT control for NOB washout. A sensitivity analysis explored expected trends to provide possible operational windows for further calibration. In essence, characterization of the physical selectors at full scale allowed a deeper understanding of operational windows of the process and quantification of capacity, ultimately leading to a more space and energy conservation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487968200013 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162540 Serial 8498  
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Bartholomeeusen, E.; Fayad, E.; Thibault-Starzyk, F.; Lu, J.; Schryvers, D.; Ooms, R.; Verboekend, D.; Jacobs, P.; Sels, B. url  doi
openurl 
  Title Towards biolubricant compatible vegetable oils by pore mouth hydrogenation with shape-selective Pt/ZSM-5 catalysts Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 6 Issue 6 Pages 2820-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pt/ZSM-5 catalysts with various crystal sizes were prepared via competitive ion-exchange, followed by a slow activation procedure. Even when using very large ZSM-5 crystals, highly dispersed Pt nano-clusters were contained within the zeolite crystal's voids, as ascertained by 2D pressure-jump IR spectroscopy of adsorbed CO and focussed ion-beam transmission electron microscopy. The shape-selective properties of the Pt/ZSM-5 catalysts were evaluated in the partial hydrogenation of soybean oil. Unique hydrogenation selectivities were observed, as the fatty acids located at the central position of the triacylglycerol (TAG) molecules were preferentially hydrogenated. The resulting oil has therefore high levels of intermediately melting TAGs, which are compatible with biolubricants due to their improved oxidative stability and still appropriate low-temperature fluidity. The TAG distribution in the partially hydrogenated soybean oil samples was independent from the zeolite crystal size, while the hydrogenation activity linearly increases with the crystal's external surface area. This trend was confirmed with a Pt loaded mesoporous ZSM-5 zeolite, obtained via a mild alkaline treatment. These observations imply and confirm a genuine pore mouth catalysis mechanism, in which only one fatty acid chain of the TAG is able to enter the micropores of ZSM-5, where the double bonds are hydrogenated by the crystal encapsulated Pt-clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374790200031 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 5 Open Access  
  Notes The research was funded through a PhD grant to J. V. A. of the Agency for Innovation by Science and Technology in Flanders (IWT). A. P. and D. V. acknowledge the F. W. O.-Vlaanderen (Research Foundation Flanders) for a post-doctoral fellowship. E. B. was kindly funded by an F. W. O.-Vlaanderen project. This work was performed in the framework of an Associated International Laboratory between FWO and CNRS. Approved Most recent IF: 5.773  
  Call Number EMAT @ emat @ c:irua:138981 Serial 4335  
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 14 Issue 10 Pages 962-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488977100016 Publication Date 2019-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 44 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986  
  Call Number UA @ admin @ c:irua:163589 Serial 5407  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E. pdf  url
doi  openurl
  Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
  Year 2015 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue 49 Pages 2358-2365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000349806400047 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330  
  Call Number c:irua:127695 Serial 307  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 12 Pages 6729-6742  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436018900004 Publication Date 2018-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151968 Serial 7574  
Permanent link to this record
 

 
Author Defoirdt, T.; Vlaeminck, S.E.; Sun, X.; Boon, N.; Clauwaert, P. pdf  url
doi  openurl
  Title Ureolytic activity and its regulation in vibrio campbellii and vibrio harveyi in relation to nitrogen recovery from human urine Type A1 Journal article
  Year 2017 Publication Environmental science and technology Abbreviated Journal  
  Volume 51 Issue 22 Pages 13335-13343  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and "motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416496700032 Publication Date 2017-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147703 Serial 8716  
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Jaroszewicz, J.; Grolimund, D.; Sanchez, D.F.; Gomez-Gonzalez, M.A.; Nuyts, G.; Reinoso-Maset, E.; Janssens, K.; Salbu, B.; Brede, D.A.; Lind, O.C. url  doi
openurl 
  Title Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed Daphnia magna Type A1 Journal article
  Year 2023 Publication Environmental science and technology Abbreviated Journal  
  Volume 57 Issue 2 Pages 1071-1079  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Micro-and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measure-ments of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compro-mised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000910915100001 Publication Date 2023-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 6.198  
  Call Number UA @ admin @ c:irua:193478 Serial 7342  
Permanent link to this record
 

 
Author Rossbach, L.M.; Brede, D.A.; Nuyts, G.; Cagno, S.; Olsson, R.M.S.; Oughton, D.H.; Falkenberg, G.; Janssens, K.; Lind, O.C. url  doi
openurl 
  Title Synchrotron XRF analysis identifies cerium accumulation colocalized with pharyngeal deformities in CeO₂ NP-exposed caenorhabditis elegans Type A1 Journal article
  Year 2022 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 56 Issue 8 Pages 5081-5089  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract A combination of synchrotron radiation-based elementalimaging, in vivo redox status analysis, histology, and toxic responses was usedto investigate the uptake, biodistribution, and adverse effects of Cenanoparticles (CeO2NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3(2.3-26 mg Ce L-1)inCaenorhabditis elegans. Elemental mapping of theexposed nematodes revealed Ce uptake in the alimentary canal prior todepuration. Retention of CeO2NPs was low compared to that of Ce(NO3)3in depurated individuals. X-rayfluorescence (XRF) mapping showed that Cetranslocation was confined to the pharyngeal valve and foregut. Ce(NO3)3exposure significantly decreased growth, fertility, and reproduction, causedslightly reduced fecundity. XRF mapping and histological analysis revealedsevere tissue deformities colocalized with retained Ce surrounding thepharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense,particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2NP-induceddeformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specificdistribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000793137500039 Publication Date 2022-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:188662 Serial 7216  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900051 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D. url  doi
openurl 
  Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
  Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 707 Issue Pages 138076  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539312200011 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:169708 Serial 6370  
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Marchevsky, A.V.; Karakulina, O.M.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots Type A1 Journal article
  Year 2016 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 618 Issue 618 Pages 253-262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the analysis of visible light activation of room temperature NO2 gas sensitivity of metal oxide semiconductors (MOS): blank and CdSe quantum dots (QDs) sensitized nanocrystallinematrixes ZnO, SnO2 and In2O3. Nanocrystalline metal oxides (MOx) ZnO, SnO2, In2O3 were synthesized by the precipitation method. Colloidal CdSe QDs were obtained by high temperature colloidal synthesis. Sensitization was effectuated by direct adsorption of CdSe QDs stabilized with oleic acid on MOx surface. The role of illumination consists in generation of electrons, which can be transferred into MOx conduction band, and holes that can recombine with the electrons previously trapped by the chemisorbed acceptor species and thus activate desorption of analyte molecules. Under green light illumination for blank SnO2 and In2O3 matrixes the indirect consequential mechanism for the generation of holes is proposed. Anothermechanismis realized in the presence of CdSe QDs. In this case the electron-hole pair is generated in the CdSe quantum dot. Sensor measurements demonstrated that synthesizedmaterials can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389164400005 Publication Date 2016-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 19 Open Access  
  Notes The work was financially supported by Russian Foundation for Basic Research grant no. 15-03-03026. Approved Most recent IF: 1.879  
  Call Number EMAT @ emat @ c:irua:138598 Serial 4321  
Permanent link to this record
 

 
Author Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B. pdf  url
doi  openurl
  Title Dehazing redox homeostasis to foster purple bacteria biotechnology Type A1 Journal article
  Year 2023 Publication Trends in biotechnology : regular edition Abbreviated Journal  
  Volume 41 Issue 1 Pages 106-119  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several ‘electron sinking’ strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000923198400001 Publication Date 2022-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1879-3096;0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.3; 2023 IF: 11.126  
  Call Number UA @ admin @ c:irua:192944 Serial 7294  
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dunaliella microalgae for nutritional protein : an undervalued asset Type A1 Journal article
  Year 2020 Publication Trends in biotechnology : regular edition Abbreviated Journal  
  Volume 38 Issue 1 Pages 10-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract β-carotene production using Dunaliella microalgae is established, yet their potential as a source of protein for food and feed applications appears to be overlooked. The rich protein content and nutritional tunability of Dunaliella make these algae intriguing sources of sustainable protein. Thus, it is of societal interest to exploit these promising proteinaceous Dunaliella traits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503376700004 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1879-3096; 0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.3 Times cited 2 Open Access  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Clean-tech Flanders (Milieu-innovatieplatform; Environment Innovation Platform) project Microbial Nutrients on Demand (MicroNOD). Dr Michele Moretti from University of Antwerp is acknowledged for proofreading the manuscript. ; Approved Most recent IF: 17.3; 2020 IF: 11.126  
  Call Number UA @ admin @ c:irua:164903 Serial 6495  
Permanent link to this record
 

 
Author Sharp, J.; Mueller, I.C.; Mandal, P.; Abbas, A.; Nord, M.; Doye, A.; Ehiasarian, A.; Hovsepian, P.; MacLaren, I.; Rainforth, W.M. url  doi
openurl 
  Title Characterisation of a high-power impulse magnetron sputtered C/Mo/W wear resistant coating by transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 377 Issue 377 Pages 124853  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of C/Mo/W deposited using combined UBM/HIPIMS sputtering show 2-8 nm clusters of material richer in Mo and W than the matrix (found by EDS microanalysis), with structures that resemble graphitic onions with the metal atoms arranged regularly within them. EELS microanalysis showed the clusters to be rich in W and Mo. As the time averaged power used in the pulsed HIPIMS magnetron was increased, the clusters became more defined, larger, and arranged into layers with amorphous matrix between them. Films deposited with average HIPIMS powers of 4 kW and 6 kW also showed a periodic modulation of the cluster density within the finer layers giving secondary, wider stripes in TEM. By analysing the ratio between the finer and coarser layers, it was found that this meta-layering is related to the substrate rotation in the deposition chamber but in a non-straightforward way. Reasons for this are proposed. The detailed structure of the clusters remains unknown and is the subject of further work. Fluctuation electron microscopy results indicated the presence of crystal planes with the graphite interlayer spacing, crystal planes in hexagonal WC perpendicular to the basal plane, and some plane spacings found in Mo2C. Other peaks in the FEM results suggested symmetry-related starting points for future determination of the structure of the clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488417800015 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 1 Open Access  
  Notes ; J.S. thanks the Mercury Centre at the University of Sheffield for funding, which was part funded by the ERDF under grant MERCURY 904467. I.C.M. acknowledges support from CONACyT and RobertoRocca Education Fellowship. We gratefully acknowledge funding from EPSRC for the pixelated STEM detector and the software used in its operation for the fluctuation microscopy (EP/M009963/ 1, EP/K503903/1 & EP/R511705/1). AD was supported by the EPSRC CDT in Integrative Sensing and Measurement, Grant Number EP/L016753/1. Funding sources did not influence the planning or execution of this work except to enable it. ; Approved Most recent IF: 2.589  
  Call Number UA @ admin @ c:irua:163700 Serial 5383  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; Oliveira, T.M. de; Assche, G.V.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition Type A1 Journal article
  Year 2018 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 349 Issue 349 Pages 1032-1041  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor based technique which allows to deposit uniform, conformal films with a thickness control at the atomic scale. In this research, Al 2 O 3 coatings were deposited on micrometer-sized Fe and Cu powder (particles) using the thermal trimethylaluminum (TMA)/ water (H 2 O) process in a rotary pump-type ALD reactor. Rotation of the powder during deposition was required to obtain a pinhole-free ALD coating. The protective nature of the coating was evaluated by quantifying its effectiveness in protecting the metal particles during oxidative annealing treatments. The Al 2 O 3 coated powders were annealed in ambient air while in-situ thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) data were acquired. The thermal stability of a series of Cu and Fe powder with different Al 2 O 3 thicknesses were determined with TGA. In both samples a clear shift in oxidation temperature is visible. For Cu and Fe powder coated with 25 nm Al 2 O 3 , we observed an increase of the oxidation temperature with 300-400°C. For the Cu powder a thin film of only 8 nm is required to obtain an initial increase in oxidation temperature of 200°C. In contrast, for Fe powder a thicker coating of 25 nm is required. In both cases, the oxidation temperature increases with increasing thickness of the Al 2 O 3 coating. These results illustrate that the Al 2 O 3 thin film, deposited by the thermal ALD process (TMA/H 2 O) can be an efficient and pinhole-free barrier layer for micrometer-sized powder particles, provided that the powder is properly agitated during the process to ensure sufficient vapour-solid interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441492600108 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 10 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (GOA 01G01513). J. D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant 335078-COLOURATOMS). The authors acknowledge S. Goeteyn for the assistance in preliminary depositions. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 2.589  
  Call Number EMAT @ emat @c:irua:152174UA @ admin @ c:irua:152174 Serial 4994  
Permanent link to this record
 

 
Author Blommaerts, N.; Dingenen, F.; Middelkoop, V.; Savelkouls, J.; Goemans, M.; Tytgat, T.; Verbruggen, S.W.; Lenaerts, S. pdf  url
doi  openurl
  Title Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy Type A1 Journal article
  Year 2018 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol  
  Volume 207 Issue 207 Pages 284-290  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recovery of valuable volatile organic compounds (VOCs) from waste streams is of great industrial importance. Adsorption on zeolites offers an economically and environmentally friendly alternative to conventional activated carbon. When evaluating the suitability of a given zeolite for a particular adsorption application, its adsorption capacity has to be determined. This is traditionally achieved using gas chromatography as an analysis tool, yielding only a few discrete sampling points that constitute the adsorption profile. Meanwhile, only low flow rates and low concentrations of volatile organics can be used, rendering the procedure troublesome and time consuming. Herein, we propose a tool for the fast screening of a large amount of zeolites using on-line and quasi real-time Fourier Transform Infrared Spectroscopy (FTIR). The technique was used to determine the adsorption capacity of three different commercial zeolites and two silica gels, for five industrially relevant VOCs: acetone; methanol; isohexane; isopentane; and toluene. A series of rapid measurements of the individual adsorption capacities were carried out to obtain a detailed overview of the versatility of the proposed method for the characterization of multi-component and multi-sorption bed systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445987500032 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.359 Times cited 5 Open Access  
  Notes ; We would like to thank Vlaams Agenschap Innoveren & Ondernemen (VLAIO) for financial support. The authors would also like to thank Kureha GmbH, Germany for kindly supplying us with their BAC (R) (bead-shaped activated carbon) samples. ; Approved Most recent IF: 3.359  
  Call Number UA @ admin @ c:irua:154694 Serial 6000  
Permanent link to this record
 

 
Author Spanoghe, J.; Ost, K.J.; Van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple bacteria screening for photoautohydrogenotrophic food production : are new H₂-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? Type A1 Journal article
  Year 2022 Publication New biotechnology Abbreviated Journal New Biotechnol  
  Volume 72 Issue Pages 38-47  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3–7 times higher compared to the isolates (0.42–0.84 d−1 at 28 °C), while protein productivities remained 1.5–1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861078800005 Publication Date 2022-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:190188 Serial 7199  
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.; pdf  url
doi  openurl
  Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
  Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol  
  Volume 11 Issue 11 Pages 825-833  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000354559600004 Publication Date 2015-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.72 Times cited 62 Open Access  
  Notes Approved Most recent IF: 5.72; 2015 IF: 6.155  
  Call Number c:irua:126351 Serial 3838  
Permanent link to this record
 

 
Author Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. pdf  url
doi  openurl
  Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal article
  Year 2024 Publication Journal of materials science & technology Abbreviated Journal Journal of Materials Science & Technology  
  Volume 185 Issue Pages 186-206  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001154261100001 Publication Date 2023-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1005-0302 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.9 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764  
  Call Number EMAT @ emat @c:irua:202392 Serial 8981  
Permanent link to this record
 

 
Author Kontogiannidou, E.; Karavasili, C.; Kouskoura, M.G.; Filippousi, M.; Van Tendeloo, G.; Andreadis, I.I.; Eleftheriadis, G.K.; Kontopoulou, I.; Markopoulou, C.K.; Bouropoulos, N.; Fatouros, D.G. pdf  url
doi  openurl
  Title In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol Type A1 Journal article
  Year 2019 Publication Journal of drug delivery science and technology Abbreviated Journal J Drug Deliv Sci Tec  
  Volume 51 Issue 51 Pages 177-184  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Microporous zeolite NaX-FAU has been systemically evaluated for the oral delivery of the poorly water-soluble compound danazol. For this purpose, danazol-loaded zeolitic particles were prepared by the incipient wetness method and were characterized by means of N-2 physisorption, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HRTEM). The zeolitic formulation shows a high drug payload and drug stability over a period of six months under accelerated storage conditions. The dissolution profile of danazol-loaded zeolitic particles was assessed in simulated gastric fluid (SGF) pH 1.2; fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) showing a gradual and increasing drug dissolution in the different media. Ex vivo studies using the everted gut sac model show an increased drug transport across rat intestinal epithelium when loaded in the zeolitic particles. Our results suggest that microporous Faujasite zeolite (NaX-FAU) could be used as a drug delivery system to facilitate the oral delivery of poorly water soluble compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468750300018 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1773-2247; 2588-8943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.194 Times cited 3 Open Access Not_Open_Access: Available from 27.08.2020  
  Notes ; This research was supported by General Secretariat for Research and Technology, Greece – Research Program “Excellence II, 4766”. The authors acknowledge financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI). ; Approved Most recent IF: 1.194  
  Call Number UA @ admin @ c:irua:160279 Serial 5252  
Permanent link to this record
 

 
Author Sóti, V.; Lenaerts, S.; Cornet, I. pdf  url
doi  openurl
  Title Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes Type A1 Journal article
  Year 2018 Publication Journal of biotechnology Abbreviated Journal J Biotechnol  
  Volume 270 Issue 270 Pages 70-76  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 10831087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427556400009 Publication Date 2018-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1656 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 6 Open Access  
  Notes ; This research is financed by the University of Antwerp [project number 15 FA100 002]. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:149006 Serial 5974  
Permanent link to this record
 

 
Author Van Putte, N.; Meire, P.; Seuntjens, P.; Joris, I.; Verreydt, G.; Hambsch, L.; Temmerman, S. pdf  url
doi  openurl
  Title Solving hindered groundwater dynamics in restored tidal marshes by creek excavation and soil amendments : a model study Type A1 Journal article
  Year 2022 Publication Ecological engineering: the journal of ecotechnology Abbreviated Journal Ecol Eng  
  Volume 178 Issue Pages 106583-15  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere  
  Abstract Groundwater fluxes in tidal marshes largely control key ecosystem functions and services, such as vegetation growth, soil carbon sequestration, and nutrient cycling. In tidal marshes restored on formerly embanked agricultural land, groundwater fluxes are often limited as compared to nearby natural marshes, as a result of historical agricultural soil compaction. To improve the functioning of restored tidal marshes, knowledge is needed on how much certain design options can optimize soil-groundwater interactions in future restoration projects. Based on measured data on soil properties and tidally induced groundwater dynamics, we calibrated and evaluated a 2D vertical model of a creek-marsh cross-section, accounting for both saturated and unsaturated groundwater flow and solute transport in a variably saturated groundwater flow model. We found that model simulations of common restoration practices such as soil amendments (increasing the depth of porous soil on top of the compact layer) and creek excavation (increasing the creek density) increase the soil aeration depth and time, the drainage depth and the solute flux, and decrease the residence time of solutes in the porewater. Our simulations indicate that increasing the depth to the compact layer from 20 cm to 40 cm, or increasing the creek density from 1 creek to 2 creeks along a 50 m marsh transect (while maintaining the total creek cross-sectional area), in both cases more than doubles the volume of water processed by the marsh soil. We discuss that this may stimulate nutrient cycling. As such, our study demonstrates that groundwater modelling can support the design of marsh restoration measures aiming to optimize groundwater fluxes and related ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795478200005 Publication Date 2022-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.8  
  Call Number UA @ admin @ c:irua:186605 Serial 7210  
Permanent link to this record
 

 
Author Pankratova, G.; Bollella, P.; Pankratov, D.; Gorton, L. url  doi
openurl 
  Title Supercapacitive biofuel cells Type A1 Journal article
  Year 2022 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 73 Issue Pages 179-187  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (sMFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760339100024 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187287 Serial 8937  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: