|
Record |
Links |
|
Author |
Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. |
|
|
Title |
“Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Journal of materials science & technology |
Abbreviated Journal |
Journal of Materials Science & Technology |
|
|
Volume |
185 |
Issue |
|
Pages |
186-206 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001154261100001 |
Publication Date |
2023-12-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1005-0302 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
10.9 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). |
Approved |
Most recent IF: 10.9; 2024 IF: 2.764 |
|
|
Call Number |
EMAT @ emat @c:irua:202392 |
Serial |
8981 |
|
Permanent link to this record |