toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 425-431  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.  
  Address MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372591700017 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 273 Open Access  
  Notes We would like to acknowledge Dr. Evert Houwman for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010- 246102 IFOX. J.V. and S.V.A. acknowledges funding from FWO project G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103- N13), and Calculations have been done on the Vienna Scientific Cluster (VSC).; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 39.737  
  Call Number c:irua:133190 c:irua:133190UA @ admin @ c:irua:133190 Serial 4041  
Permanent link to this record
 

 
Author Geuchies, J.J.; van Overbeek, C.; Evers, W.H.; Goris, B.; de Backer, A.; Gantapara, A.P.; Rabouw, F.T.; Hilhorst, J.; Peters, J.L.; Konovalov, O.; Petukhov, A.V.; Dijkstra, M.; Siebbeles, L.D.A.; van Aert, S.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 1248-1254  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.  
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389104400011 Publication Date 2016-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 182 Open Access OpenAccess  
  Notes This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 39.737  
  Call Number EMAT @ emat @ c:irua:136165 Serial 4289  
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D. pdf  url
doi  openurl
  Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 14 Issue 1 Pages 4462  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037058500022 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:198158 Serial 8808  
Permanent link to this record
 

 
Author De Backer, A.; Van Aert, S.; Faes, C.; Arslan Irmak, E.; Nellist, P.D.; Jones, L. url  doi
openurl 
  Title Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm Type A1 Journal article
  Year 2022 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 8 Issue 1 Pages 216  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images acquired with sufficiently low incident electron doses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000866500900001 Publication Date 2022-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A. and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B. L.J. acknowledges Science Foundation Ireland (SFI – grant number URF/RI/191637), the Royal Society, and the AMBER Centre. The authors acknowledge Aakash Varambhia for his assistance and expertise with the experimental recording and use of characterization facilities within the David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, and in particular the EPSRC (EP/K040375/1 South of England Analytical Electron Microscope).; esteem3reported; esteem3JRA Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:191398 Serial 7114  
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal article
  Year 2024 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 10 Issue 1 Pages 10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138183000001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202714 Serial 8994  
Permanent link to this record
 

 
Author Zheng, Y.-R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T.-W.; Presel, F.; Altantzis, T.; Fatermans, J.; Scott, S.B.; Secher, N.M.; Moon, C.; Liu, P.; Bals, S.; Van Aert, S.; Cao, A.; Anand, M.; Nørskov, J.K.; Kibsgaard, J.; Chorkendorff, I. url  doi
openurl 
  Title Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts Type A1 Journal article
  Year 2021 Publication Nature Energy Abbreviated Journal Nat Energy  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Development of low-cost and high-performance oxygen evolution reaction catalysts is key to implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridium-based oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA “g” _“Ir” ^“-1” and a turnover frequency of 2.3 ± 0.9 s-1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728458000001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 95 Open Access OpenAccess  
  Notes Y.-R.Z. and Z.W acknowledge funding from the Toyota Research Institute. This project has received funding from VILLUM FONDEN (grant no. 9455) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grants no. 741860-CLUNATRA, no. 815128−REALNANO and no. 770887−PICOMETRICS). S.B. and S.V.A. acknowledge funding from the Research Foundation Flanders (FWO, G026718N and G050218N). T.A. acknowledges the University of Antwerp Research Fund (BOF). STEM measurements were supported by the European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3.; sygmaSB Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:184794 Serial 6903  
Permanent link to this record
 

 
Author Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F. url  doi
openurl 
  Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 42420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393940700001 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 25 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423  
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 8791-8798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404614700031 Publication Date 2017-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 33 Open Access OpenAccess  
  Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617  
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612999200029 Publication Date 2020-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:174858 Serial 6665  
Permanent link to this record
 

 
Author Fatermans, J.; Romolini, G.; Altantzis, T.; Hofkens, J.; Roeffaers, M.B.J.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Structural analysis of metal clusters confined in nanoporous materials is typically performed by X-ray-driven techniques. Although X-ray analysis has proved its strength in the characterization of metal clusters, it provides averaged structural information. Therefore, we here present an alternative workflow for bringing the characterization of confined metal clusters towards the local scale. This workflow is based on the combination of aberration-corrected transmission electron microscopy (TEM), TEM image simulations, and powder X-ray diffraction (XRD) with advanced statistical techniques. In this manner, we were able to characterize the clustering of Pb atoms in Linde Type A (LTA) zeolites with Pb loadings as low as 5 wt%. Moreover, individual Pb clusters could be directly detected. The proposed methodology thus enables a local-scale characterization of confined metal clusters in zeolites. This is important for further elucidation of the connection between the structure and the physicochemical properties of such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809619900001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes The authors acknowledge the Research Foundation Flanders through project fundings (FWO, G026718N, G050218N, ZW15_09-G0H6316N, and W002221N) and through a PhD scholarship to G.R. (grant 11C6920N), as well as iBOF-21-085 PERSIST. T.A. and S.V.A. acknowledge funding from the University of Antwerp Research fund (BOF). J.H. acknowledges the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as MPI fellow. M.R. acknowledges funding by the KU Leuven Research Fund (C14/19/079). S.B. and S.V.A. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128−REALNANO and No. 770887−PICOMETRICS). The authors thank Dr. D. Chernyshov for the collection of XRD measurements. Approved Most recent IF: 6.7  
  Call Number EMAT @ emat @c:irua:189061 Serial 7076  
Permanent link to this record
 

 
Author Gonnissen, J.; de Backer, A.; den Dekker, A.J.; Martinez, G.T.; Rosenauer, A.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 6 Pages 063116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000341188700073 Publication Date 2014-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes FWO (G.0393.11; G.0064.10; and G.0374.13); European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 312483 (ESTEEM2); esteem2_jra2 Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:118333 Serial 2482  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Altantzis, T.; De Backer, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Recent breakthroughs in scanning transmission electron microscopy of small species Type A1 Journal article
  Year 2018 Publication Advances in Physics: X Abbreviated Journal Advances in Physics: X  
  Volume 3 Issue 3 Pages 1480420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441619500001 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-6149 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access OpenAccess  
  Notes This work was supported by the Research Foundation Flanders (FWO, Belgium) under Grant G.0368.15N, G.0369.15N, and G.0267.18N, by personal FWO Grants to K. H. W. van den Bos, T. Altantzis, and A. De Backer, and the European Research Council under Grant 335078 COLOURATOM to S. Bals. The authors would like to thank the colleagues who have contributed to this work over the years, including A. M. Abakumov, K. J. Batenburg, E. Countiño-Gonzalez, C. de Mello Donega, R. Erni, J. J. Geuchies, B. Goris, J. Hofkens, L. Jones, P. Lievens, L. M. Liz-Marzán, I. Lobato, G. T. Martinez, P. D. Nellist, B. Partoens, M. B. J. Roeffaers, M.D. Rossell, B. Schoeters, M. J. Van Bael, W. van der Stam, M. van Huis, G. Van Tendeloo, D. Vanmaekelbergh, and N. Winckelmans. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:152820UA @ admin @ c:irua:152820 Serial 5007  
Permanent link to this record
 

 
Author Schryvers, D.; Cao, S.; Tirry, W.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials Type A1 Journal article
  Year 2013 Publication Science and technology of advanced materials Abbreviated Journal Sci Technol Adv Mat  
  Volume 14 Issue 1 Pages 014206-14213  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary NiTi, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sendai Editor  
  Language Wos 000316463800008 Publication Date 2013-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-6996;1878-5514; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.798 Times cited 6 Open Access  
  Notes Fwo; Iap; Esteem Approved Most recent IF: 3.798; 2013 IF: 2.613  
  Call Number UA @ lucian @ c:irua:107343 Serial 77  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 644 Issue Pages 012034-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:129198 Serial 4506  
Permanent link to this record
 

 
Author De Backer, A.; De Wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits? Type P1 Proceeding
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 644 Issue 644 Pages 012034  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atom-counting diagnosed by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366826200034 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title Electron Microscopy and Analysis Group Conference (EMAG), JUN 02-JUL 02, 2015, Manchester, ENGLAND  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N, G.0369.15N, and G.0374.15N) and a PhD research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3), ERC Starting Grant 278510 Vortex, and the UK Engineering and Physical Sciences Research Council (EP/K032518/1). The authors acknowledge Johnson-Matthey for providing the sample and PhD funding to K E MacArthur. A Rosenauer is acknowledged for providing the STEMsim program.; esteem2jra2; ECASJO; Approved Most recent IF: NA  
  Call Number c:irua:130314 c:irua:130314 Serial 4050  
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
  Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 902 Issue Pages 012013  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416370700013 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147188 Serial 4764  
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S. url  doi
openurl 
  Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
  Year 2023 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume 29 Issue 1 Pages 395-407  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033590800038 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 1 Open Access OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891  
  Call Number UA @ admin @ c:irua:198221 Serial 8912  
Permanent link to this record
 

 
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A. url  doi
openurl 
  Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064107-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315144700006 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:105674 Serial 2718  
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W. url  doi
openurl 
  Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 15 Pages 155123-155126  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326087100003 Publication Date 2013-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Duchamp, M.; Roesner, M.; Migunov, V.; Winkler, F.; Yang, H.; Huth, M.; Ritz, R.; Simson, M.; Ihle, S.; Soltau, H.; Wehling, T.; Dunin-Borkowski, R.E.; Van Aert, S.; Rosenauer, A. url  doi
openurl 
  Title Atomic-scale quantification of charge densities in two-dimensional materials Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 12 Pages 121408  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000445508200004 Publication Date 2018-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access OpenAccess  
  Notes ; K.M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (VH-NG-1317) within the framework of the Helmholtz Young Investigator Group moreSTEM at Forschungszentrum Julich, Germany. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153621 Serial 5078  
Permanent link to this record
 

 
Author van den Bos, K.H. W.; De Backer, A.; Martinez, G.T.; Winckelmans, N.; Bals, S.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 116 Issue 116 Pages 246101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of new nanocrystals with outstanding physicochemical properties requires a full threedimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378059500010 Publication Date 2016-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects No. G.0374.13N, No. G.0368.15N, and No. G.0369.15N, and by grants to K. H.W. van den Bos and A. De Backer. S. Bals and N. Winckelmans acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant No. 312483—ESTEEM2. The authors are grateful to A. Rosenauer for providing the STEMsim program.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.462  
  Call Number c:irua:133954 c:irua:133954 Serial 4084  
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, A. J.; Müller-Caspary, K.; Lobato, I.; O’Leary, C. M.; Nellist, P. D.; Van Aert, S. url  doi
openurl 
  Title Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 121 Issue 5 Pages 056101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Single atom detection is of key importance to solving a wide range of scientific and technological problems. The strong interaction of electrons with matter makes transmission electron microscopy one of the most promising techniques. In particular, aberration correction using scanning transmission electron microscopy has made a significant step forward toward detecting single atoms. However, to overcome radiation damage, related to the use of high-energy electrons, the incoming electron dose should be kept low enough. This results in images exhibiting a low signal-to-noise ratio and extremely weak contrast, especially for light-element nanomaterials. To overcome this problem, a combination of physics-based model fitting and the use of a model-order selection method is proposed, enabling one to detect single atoms with high reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440143200007 Publication Date 2018-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 6 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project fundings (No. WO.010.16N, No. G.0368.15N, No. G.0502.18N). The authors are grateful to M. Van Bael and P. Lievens (KU Leuven) and to L. M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:152819 Serial 5004  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D. pdf  url
doi  openurl
  Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 6 Pages 066101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458824200008 Publication Date 2019-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A. pdf  url
doi  openurl
  Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 10 Pages 106102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461067700007 Publication Date 2019-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 26 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Varambhia, A.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 124 Issue 10 Pages 106105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519718100015 Publication Date 2020-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. L.J. acknowledges the SFI AMBER Centre for support. A.V. and P.D.N. acknowledge the UK Engineering and Physical Sciences Council (EPSRC) for support (EP/K040375/1 and 1772738). A.V. also acknowledges Johnson-Matthey for support. We would like to thank Brian Theobald and Jonathan Sharman from JMTC Sonning for provision of the Pt sample. Approved Most recent IF: 8.6; 2020 IF: 8.462  
  Call Number EMAT @ emat @c:irua:167148 Serial 6347  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue 12 Pages 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.; Avila-Brande, D. url  doi
openurl 
  Title Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 9 Pages 096106,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The local structure of Bi4W2/3Mn1/3O8Cl is determined using quantitative transmission electron microscopy. The electron exit wave, which is closely related to the projected crystal potential, is reconstructed and used as a starting point for statistical parameter estimation. This method allows us to refine all atomic positions on a local scale, including those of the light atoms, with a precision in the picometer range. Using this method one is no longer restricted to the information limit of the electron microscope. Our results are in good agreement with x-ray powder diffraction data demonstrating the reliability of the method. Moreover, it will be shown that local effects can be interpreted using this approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000235905700042 Publication Date 2006-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 69 Open Access  
  Notes Fwo; Iap V Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:56977 Serial 3154  
Permanent link to this record
 

 
Author Samal, D.; Gauquelin, N.; Takamura, Y.; Lobato, I.; Arenholz, E.; Van Aert, S.; Huijben, M.; Zhong, Z.; Verbeeck, J.; Van Tendeloo, G.; Koster, G. url  doi
openurl 
  Title Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 5 Pages 054803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041792100007 Publication Date 2023-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Air Force Office of Scientific Research; European Office of Aerospace Research and Development, FA8655-10-1-3077 ; Office of Science, DE-AC02-05CH11231 ; National Science Foundation, DMR-1745450 ; Seventh Framework Programme, 278510 ; Bijzonder Onderzoeksfonds UGent; Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:196973 Serial 8790  
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D. pdf  url
doi  openurl
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research  
  Volume 2 Issue 2 Pages 023404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603642700008 Publication Date 2020-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 58 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:172462 Serial 6401  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: