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We propose a new method to measure atomic scale dynamics of nanoparticles from experimental
high-resolution annular dark field scanning transmission electron microscopy images. By using
the so-called hidden Markov model, which explicitly models the possibility of structural changes,
the number of atoms in each atomic column can be quantified over time. This newly proposed
method outperforms the current atom-counting procedure and enables the determination of the
probabilities and cross sections for surface diffusion. This method is therefore of great importance
for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics,
surface diffusion, beam effects, or during in situ experiments.

In the field of atomic resolution electron microscopy,
quantitative methods are becoming increasingly impor-
tant for a reliable structure determination of a nanomate-
rial in three dimensions [1–6]. However, such quantitative
analysis tools largely focus on a stationary structure as a
result of which the insight into the dynamics is lacking.
Since the atomic structure of a nanomaterial can evolve
over time via adatom dynamics [7, 8], surface diffusion
and reconstruction [9–13], beam effects [14–17], or dur-
ing in situ experiments [18, 19], a quantitative analysis
at a single time-point is often insufficient to understand
the atomic structure-properties relationship. Different
time-resolving techniques, such as dynamic transmission
electron microscopy [20, 21], ultrafast electron diffraction
[22–27], and ultrafast x-ray imaging [28, 29] have been de-
veloped in order to study structural dynamics with very
high temporal resolution. Since these techniques sacrifice
direct atomic resolution imaging, high-resolution trans-
mission electron microscopy [30], off-axis electron holog-
raphy [31], or annular dark field (ADF) scanning trans-
mission electron microscopy (STEM) [32, 33] are needed
to obtain local structural information at atomic resolu-
tion and subsecond temporal resolution. This time reso-
lution is adequate in order to study transient atomic scale
phenomena [19, 34–39]. The concomitant advantage for
ADF STEM images is that the intensities are peaked
at the atomic column positions and depend monotoni-
cally on the atomic mass number Z and the thickness of
the material enabling us to count the number of atoms
in each atomic column. In this Letter, we propose a
method for reliable atom counting from a sequence of
ADF STEM images allowing us to measure the dynamic
structural changes of nanoparticles.
From the ADF STEM images, we can quantify the to-
tal intensity of electrons scattered towards the annular
detector from each atomic column. These are the so-

called scattering cross sections [40, 41], and are a suitable
measure for reliable atom counting [42]. In pure-element
nanomaterials, the number of atoms in each atomic col-
umn can be determined using these scattering cross sec-
tions [32, 33, 43–46]. When the atom-counting results are
combined with a structural energy minimization [47–49],
we can obtain a visualization of the 3D atomic structure
from a 2D image without the need for the large elec-
tron doses and long acquisition times generally required
for electron tomography. In order to quantify atomic
scale dynamics, we will use a so-called hidden Markov
model. Hidden Markov models were successful in other
fields of science for applications such as speech recogni-
tion, sequence alignment of protein structures, electro-
cardiogram characterization and condition-based main-
tenance of industrial machines [50–54] and have optimal
properties for modeling and analyzing time series data.
Here, for the first time, we apply hidden Markov models
to ADF STEM data.

A hidden Markov model consists of two layers: a “hid-
den” Markov chain state sequence and an observed se-
quence. In order to use hidden Markov models for atom
counting, we model the number of atoms in each atomic
column of the nanoparticle as the hidden states and the
scattering cross sections estimated from the ADF STEM
images as the observations. Table 1 in the Supplemental
Material [55] summarizes the notation used throughout
this Letter. The hidden state sequence is represented by
a stochastic tensor H = (h1, · · · ,hT )

ᵀ
which contains

the states ht at each time t, with T the total number of
frames in the time series. In our method, the state ht is

a binary matrix with elements h
(n)
tg = 1, if and only if at

time t, the nth atomic column of the nanoparticle con-
tains g atoms. As such, we consider the number of atoms
in each atomic column as a separate hidden state, and we
can use the so-called factorial hidden Markov model [56],
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Figure 1. (a) Graphical representation of a hidden Markov model, which consists of a hidden state sequence (top row) and
an observed sequence (bottom row), connected through the emission probability (red). The hidden states can have different
possible values over time according to initial (blue) and transition probabilities (green). (b) The hidden Markov model for
atom counting models the number of atoms in each atomic column of the nanoparticle as the hidden states (top row) and the
scattering cross sections obtained from the ADF STEM images as the observations (bottom row).

where the states and model probabilities are factorized
over the atomic columns. The observed sequence is repre-
sented by the matrix O = (o1, · · · ,oT )

ᵀ
, where ot is the

observed vector at time t in the time series, with elements

o
(n)
t , the scattering cross section of the nth atomic col-

umn at time t. When T = 1, this approach is identical to
the existing procedure for atom counting [32, 33, 45, 46].
The (factorial) hidden Markov model is described by the
joint probability density function of the hidden state se-
quence H and the observed sequence O:

p(H,O;Ω)

= p (h1; I)

T∏
t=2

p (ht|ht−1;A)

T∏
t′=1

p (ot′ |ht′ ;µ, σ) , (1)

with Ω = {I,A,µ, σ} the parameters of the hidden
Markov model. The joint probability density function
of Eq. (1) consists of three contributions, schematically
shown in Fig. 1. First, the initial probability distribution,
defined as follows:

p (h1; I) =

N∏
n=1

G∏
g=0

ι
h
(n)
1g

g , (2)

with I the vector containing all initial probabilities ιg
for an atomic column to have g atoms in frame 1, G the
maximum number of atoms in an atomic column and N
the number of atomic columns. Once the state sequence
is initialized, the transition probability describes how the
states can change from frame to frame in the time series:

p (ht|ht−1;A) =

N∏
n=1

G∏
g1=0

G∏
g2=0

A
h
(n)
t−1,g1

h
(n)
t,g2

g1g2 . (3)

This is the probability of state ht, given the previous
state ht−1. The transition probabilities are summarized
by the transition matrixA, with elements Ag1g2 the prob-
ability that the number of atoms in an atomic column
changes from g1 in one frame to g2 in the next frame
of the time series. The Markov property imposes that
the state sequence has no memory: the number of atoms

in an atomic column in a frame only depends on the
number of atoms in that atomic column in the previous
frame, and does not depend on any earlier frames. The
hidden Markov model does not impose further restric-
tions on the physical mechanism causing the changes in
the atomic structure. Finally, for each frame, there is an
emission probability that describes the probability of an
observation, given the hidden state at that time. Ideally,
all atomic columns with the same number of atoms re-
sult in the same scattering cross section. However, there
are fluctuations due to a combination of different effects
such as electron counting statistics, instabilities of the mi-
croscope, different vertical onset of columns of the same
number of atoms, vacancies, relaxation at the boundaries,
contamination, intensity transfer between columns, and
the influence of neighboring columns of different number
of atoms. Therefore, the scattering cross sections are re-
garded as a statistical draw from a Gaussian distribution,
which defines the emission probability:

p (ot|ht;µ, σ) =

N∏
n=1

G∏
g=0

N
(
o
(n)
t |µg, σ

)h(n)
tg

, (4)

with µ the vector containing the average scattering cross
sections µg for an atomic column with g atoms, and σ
the width of the Gaussian distribution, analogous to the
approach followed in Refs. [33, 45]. Furthermore, prior
knowledge from image simulations is incorporated by im-
posing a linear scaling between the average scattering
cross sections and the scattering cross section resulting
from image simulations:

µg = aMg. (5)

In this expression, Mg is the scattering cross section re-
sulting from image simulations and a is a linear scaling
parameter that allows us to compensate for a possible
mismatch between experiment and simulation, such as
intensity changes due to a slightly different detector in-
ner angle or the intensity loss caused by small sample
tilt [46, 57]. This approach was introduced for single
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frames as the hybrid method for atom counting, yield-
ing improved atom-counting reliability, especially at low
electron doses, compared to alternative approaches [46].

In order to retrieve the hidden state sequence from
the observed sequence, the parameters of the factorial
hidden Markov model for atom counting are estimated.
The unknown parameters are

Ω = (ι0, · · · , ιG−1, A00, · · · , AG,G−1, a, σ) . (6)

Since
∑G

g=0 ιg = 1 and
∑G

g=0Ajg = 1 ∀ 0 ≤ j ≤ G,
G + 2 parameters (ιG and AjG with 0 ≤ j ≤ G) could
be omitted from the parameter vector Ω. The parame-
ters Ω can be estimated using the maximum likelihood
estimator [58]. Therefore, the complete data likelihood
function of the unknown parameter vector for the ob-
served and hidden data, which follows from Eq. (1), has
to be maximized:

L(Ω;H,O) = p (h1)
T∏

t=2

p (ht|ht−1)

T∏
t′=1

p (ot′ |ht′) .(7)

The likelihood can be maximized analytically, by solving
the likelihood equation:

∂ logL(Ω;H,O)

∂Ω
= 0. (8)

This equation is solved iteratively, using an expectation-
maximization algorithm, usually called the Baum-Welch
algorithm in the context of hidden Markov models [50].
Using the estimated parameters, the hidden state se-
quence with the joint highest probability is retrieved us-
ing a path backtracking algorithm, called the Viterbi al-
gorithm [59, 60]. More details about both algorithms are
provided in Sec. 1 of the Supplementary Material [55].

In order to illustrate the benefits of this newly de-
veloped hidden Markov model for atom counting from
a time series, we compare its performance to the hy-
brid method [46]. For the hybrid method, the scatter-
ing cross sections of all frames of the time series are
jointly analyzed, such that the counting results are based
on the same set of observations as the hidden Markov
model. The counting results are then extracted per frame
from this so-called collective analysis [61, 62]. We sim-
ulated scattering cross sections corresponding to hypo-
thetic ADF STEM time series with 40 frames of a chang-
ing Pt nanoparticle with 215 atomic columns, and a
thickness up to 15 atoms, similar to the experimental ex-
ample that will be discussed further in this Letter. The
number of atoms in a column can change by ±1 from
frame to frame throughout the time series, with a prob-
ability of 10%. An example of the 3D atomic structure
of the Pt nanoparticle and how it changes over time is
shown in Fig. 2(a). More details about the simulation
can be found in Sec. 2 of the Supplementary Material
[55]. In Fig. 2(b), the average percentage of correctly
counted atomic columns by both methods, with a 95%

confidence interval, is evaluated as a function of the elec-
tron dose. The hidden Markov model counts the number
of atoms in each column more accurately, both at low
electron doses, where Poisson noise dominates, and at
high electron dose, where the scan distortion is the dom-
inant noise contribution [63]. The improved performance
of the hidden Markov model is a direct consequence of
using the Viterbi algorithm to retrieve the counting re-
sults. The most likely state sequence obtained by this
algorithm employs the extra information from the tran-
sition probabilities to unravel the states and is therefore
not limited strictly by the overlap of the Gaussian dis-
tributions around the average scattering cross sections of
columns with different thicknesses.

In Figs. 2(c) and 2(d), the underlying transition ma-
trices A are shown for a noise realization at low and high
electron dose respectively. In Figs. 2(e)-2(h), we show the
estimated transition matrices using both methods for the
respective low and high dose noise realizations. The tran-
sition matrix for the collective hybrid method was esti-
mated by considering the obtained atom-counting results
as a Markov chain. The transition matrix summarizes
the estimated structural changes of the nanoparticle: di-
agonal elements correspond to the probabilities that the
number of atoms in an atomic column with a given thick-
ness does not change from one frame to the next and off-
diagonal elements in the lower and upper triangle corre-
spond to the probabilities for an atomic column to lose
or gain atoms respectively. From the comparison of Figs.
2(g) and 2(h) with the respective ground truth in Figs.
2(c) and 2(d), it is clear that the collective hybrid method
overinterprets intensity variations during the time series
as actual thickness changes, both at low and high elec-
tron doses. From Figs. 2(e) and 2(f) on the other hand,
it is clear that the hidden Markov model far more accu-
rately retrieves the transition probabilities, and therefore
opens up possibilities for a reliable quantification of dy-
namic structural changes of nanoparticles at the atomic
scale.

Next, we apply this to an experimental time series of
a catalyst Pt nanoparticle. ADF STEM images were
recorded on a JEOL ARM200CF fitted with a probe-
aberration corrector using an acceleration voltage of 200
kV, a probe convergence angle of 22.48 mrad, an annu-
lar detector ranging from 52-248 mrad, a dwell time of
4µs and an electron dose of 1.38× 104 e−/Å2 per frame.
All images of the time series are shown in Fig. S1 of the
Supplemental Material [55]. The images from the time
series were corrected for drift and other distortions us-
ing nonrigid registration [64]. Coordinates of the atomic
columns were selected in each frame using the maximum
a posteriori probability (MAP) rule for atomic column
detection introduced in [65]. As such, we could reliably
determine all atomic columns present in the nanoparticle
throughout the time series. During the time series, the
Pt nanoparticle tilts slightly away from zone axis orienta-
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Figure 2. (a) Example of the 3D atomic structure of the changing Pt nanoparticle. (b) Percentage of correctly counted atomic
columns, with a 95% confidence interval as a function of the electron dose in each individual frame. (c)-(h) Ground truth and
estimated transition matrices using the hidden Markov model analysis and the collective hybrid method with electron dose
5× 102 and 105 e−/Å2.

tion and back, which affects the scattering cross sections
[57]. However, the hidden Markov model only estimates
one linear scaling parameter for all frames of the time
series. Therefore, the scattering cross sections of the in-
dividual frames need to be compensated for tilt, prior to
the hidden Markov model analysis. This is done by us-
ing a linear scaling of the scattering cross sections of the
individual frames [46], assuming that the total number
of atoms in the nanoparticle remains constant through-
out the time series. This assumption is valid since the
threshold energy for sputtering Pt atoms from a convex
surface with step sites is 379 keV [16], well above the in-
cident electron energy of 200 keV. We therefore do not
expect sputtering of atoms from the surface, only sur-
face diffusion [63]. Next, dynamic structural changes are
determined from the time series analysis using a hidden
Markov model, of which the results are shown schemat-
ically in Fig. 3. The counting results for all frames are
shown in Fig. S2 of the Supplemental Material [55].

Figure 3. (a) The experimental ADF STEM time series of
a Pt nanoparticle. (b) From the estimated hidden Markov
model, the hidden state sequence is retrieved.

The HAADF STEM projection images reveal the

faceted shape of the Pt nanoparticle. The {111} facets,
on occasion decorated by additional atoms [66], are indi-
cated by green crosses in Fig. 4(a). Using the counting re-
sults from our hidden Markov model analysis, we can now
quantify the evolution of the number of atoms in these
facets for each frame of the time series [Fig. 4(b)]. While
the total number of atoms in the Pt nanoparticle remains
the same, the number of atoms in the {111} facets along
the beam direction decreases and the Pt nanoparticle
gradually loses its faceted morphology during electron
beam irradiation. This result is consistent with earlier
observations of the same type of Pt nanoparticles [44] and
can be explained by beam-induced surface diffusion. The
hidden Markov model analysis has the added advantage
that it enables us to quantify the probability for surface
diffusion. From the transition probabilities shown in Fig.
4(c) it follows that the average probability for a surface
atom to move to another column equals 4.6%. Taking
into account the electron dose [63, 67], an experimental
value for the average cross section for surface diffusion
σ̂ = 3.3 × 10−6 Å2, can even be determined. This cross
section for surface diffusion includes the contributions of
different migration mechanisms, such as hopping, atomic
exchange, and vacancy diffusion, and from different types
of surfaces [68, 69]. This value is of great importance in
order to unravel dominant mechanisms and surfaces in
the diffusion process and to gain new insights in sur-
face related phenomena such as catalysis and nanoparti-
cle growth.

In conclusion, we present a new statistical framework
to reliably count the number of atoms in the atomic
columns of a pure-element nanostructure in each frame
of an ADF STEM time series using the so-called factorial
hidden Markov model. As a proof of concept, we show
that the performance of this new method significantly
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Figure 4. (a) The Pt nanoparticle shows clear facets along the
beam direction. Atomic columns in {111} facets are indicated.
(b) Number of atoms in the {111} facets indicated in (a). (c)
Estimated transition probability matrix.

surpasses that of the current method for atom counting.
This improved performance could be achieved since the
hidden Markov model explicitly models the dynamics of
the system. The new method is applied to an experi-
mental time series of ADF STEM images of a catalyst
Pt nanoparticle, and reveals the loss of the Pt nanopar-
ticle’s faceted morphology during the time series, due to
the electron beam irradiation. Furthermore, our novel
analysis approach enables us to quantify the probability
and cross section for surface diffusion from a time-series
of experimental ADF STEM images. The hidden Markov
model for atom counting therefore holds promise for a
reliable quantification of dynamic structural changes by
adatom dynamics, surface diffusion, beam effects, or dur-
ing in situ experiments. The hidden Markov model was
implemented in the freely available StatSTEM software
[2].
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A. Yáñez, J. Pizarro, E. Guerrero, T. Ben, and S. I.
Molina, The Peak Pairs algorithm for strain mapping
from HRTEM images, Ultramicroscopy 107, 1186 (2007).

[2] A. De Backer, K. H. W. van den Bos, W. Van den Broek,
J. Sijbers, and S. Van Aert, StatSTEM: An efficient ap-

proach for accurate and precise model-based quantifica-
tion of atomic resolution electron microscopy images, Ul-
tramicroscopy 171, 104 (2016).

[3] Y. Wang, U. Salzberger, W. Sigle, E. Suyolcu, and P. van
Aken, Oxygen octahedra picker: A software tool to ex-
tract quantitative information from STEM images, Ul-
tramicroscopy 168, 46 (2016).

[4] M. Nord, P. E. Vullum, I. MacLaren, T. Tybell, and
R. Holmestad, Atomap: a new software tool for auto-
mated analysis of atomic resolution images using two-
dimensional Gaussian fitting, Adv. Struct. Chem. Imag-
ing 3, 9 (2017).

[5] J. Madsen, P. Liu, J. Kling, J. B. Wagner, T. W. Hansen,
O. Winther, and J. Schiøtz, A Deep Learning Approach
to Identify Local Structures in Atomic-Resolution Trans-
mission Electron Microscopy Images, Advanced Theory
and Simulations 1, 1800037 (2018).

[6] F. e. a. de la Peña, hyperspy/hyperspy: Hyperspy v1.5.2
(2019).

[7] H. Chang, M. Saito, T. Nagai, Y. Liang, Y. Kawazoe,
Z. Wang, H. Wu, K. Kimoto, and Y. Ikuhara, Single
adatom dynamics at monatomic steps of free-standing
few-layer reduced graphene, Sci. Rep. 4, 6037 (2015).

[8] T. Furnival, D. Knez, E. Schmidt, R. K. Leary, G. Koth-
leitner, F. Hofer, P. D. Bristowe, and P. A. Midg-
ley, Adatom dynamics and the surface reconstruction of
Si(110) revealed using time-resolved electron microscopy,
Appl. Physics Lett. 113, 183104 (2018).

[9] A. Surrey, D. Pohl, L. Schultz, and B. Rellinghaus, Quan-
titative Measurement of the Surface Self-Diffusion on
Au Nanoparticles by Aberration-Corrected Transmission
Electron Microscopy, Nano Lett. 12, 6071 (2012).

[10] S. Schneider, A. Surrey, D. Pohl, L. Schultz, and
B. Rellinghaus, Atomic surface diffusion on Pt nanopar-
ticles quantified by high-resolution transmission electron
microscopy, Micron 63, 52 (2014).

[11] V. Cherepanov and B. Voigtländer, Influence of mate-
rial, surface reconstruction, and strain on diffusion at the
Ge(111) surface, Phys. Rev. B 69, 125331 (2004).

[12] P. A. Buffat, Electron diffraction and HRTEM studies
of multiply-twinned structures and dynamical events in
metal nanoparticles: facts and artefacts, Mater. Chem.
Phys. 81, 368 (2003).

[13] J. Yu, X. Li, J. Miao, W. Yuan, S. Zhou, B. Zhu, Y. Gao,
H. Yang, Z. Zhang, and Y. Wang, Atomic Mechanism
in Layer-by-Layer Growth via Surface Reconstruction,
Nano Lett. 19, 4205 (2019).

[14] S. Iijima and T. Ichihashi, Structural Instability of Ultra-
fine Particles of Metals, Phys. Rev. Lett. 56, 616 (1986).

[15] P. E. Batson, Motion of Gold Atoms on Carbon in the
Aberration-Corrected STEM, Microsc. Microanal. 14, 89
(2008).

[16] R. F. Egerton, R. McLeod, F. Wang, and M. Malac, Basic
questions related to electron-induced sputtering in the
TEM, Ultramicroscopy 110, 991 (2010).

[17] J. Lee, W. Zhou, J. Pennycook, J.-C. Idrobo, and S. T.
Pantelides, Direct visualization of reversible dynamics in
a Si6 cluster embedded in a graphene pore, Nat. Com-
mun. 4, 1650 (2013).

[18] M. L. Taheri, E. A. Stach, I. Arslan, P. A. Crozier,
B. C. Kabius, T. LaGrange, A. M. Minor, S. Takeda,
M. Tanase, J. B. Wagner, and R. Sharma, Current sta-
tus and future directions for in situ transmission electron
microscopy, Ultramicroscopy 170, 86 (2016).

mailto:sandra.vanaert@uantwerpen.be
https://doi.org/10.5281/zenodo.3396791


6

[19] T. Altantzis, I. Lobato, A. De Backer, A. Béché,
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1. PARAMETER ESTIMATION

Table I summarizes the notation used for the factorial
hidden Markov model for atom counting.

1.1. Expectation-Maximisation algorithm

The expectation-maximisation algorithm for the facto-
rial hidden Markov model for atom counting, also called
the Baum-Welch algorithm, updates the parameter esti-
mates in order to maximize the complete data likelihood
expressed by equations (1)-(4) [1].

p(H,O; Ω)

= p (h1; I)

T∏
t=2

p (ht|ht−1; A)

T∏
t′=1

p (ot′ |ht′ ;µ, σ) , (1)

with

p (h1; I) =

N∏
n=1

G∏
g=0

ι
h
(n)
1g

g , (2)

p (ht|ht−1; A) =

N∏
n=1

G∏
g1=0

G∏
g2=0

A
h
(n)
t−1,g1

h
(n)
t,g2

g1g2 , (3)

p (ot|ht;µ, σ) =

N∏
n=1

G∏
g=0

N
(
o
(n)
t |µg, σ

)h(n)
tg

, (4)

where µg = aMg, with a a linear scaling parameter and
Mg the simulated scattering cross section for a column
with g atoms (also called library value).
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In the M-step, the parameters are updated to maximize
the likelihood, using the following update formulas:

ιg =

∑N
n=1 E

[
h
(n)
1g

]
∑N

n=1

∑G
j=0 E

[
h
(n)
1j

] , (5)

Ajg =

∑T
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∑N
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(n)
tg h

(n)
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]
∑T
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∑N
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h
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tg′ h
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] , (6)
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tg

]
o
(n)
t Mg∑T

t=1
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h
(n)
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]
M2
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, (7)

σ =

√√√√√∑T
t=1

∑N
n=1

∑G
g=0 E

[
h
(n)
tg

]
(o

(n)
t − aMg)2∑T

t=1

∑N
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∑G
g=0 E

[
h
(n)
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] . (8)

During the E-step of the algorithm, the quantities

E
[
h
(n)
tg

]
and E

[
h
(n)
tg h

(n)
t−1,j

]
are determined, and the like-

lihood is calculated. The iterative algorithm keeps up-
dating the parameter estimates until the value of the like-
lihood has converged. As such we obtain maximum like-
lihood estimates of the model parameters of the factorial
hidden Markov model for atom counting.

1.2. Viterbi algorithm

Next, the hidden state sequence is retrieved based
on the estimated parameters using a path backtracking
algorithm, called the Viterbi algorithm [2, 3]. The goal
of the Viterbi algorithm for hidden Markov models is to
determine the most likely hidden state sequence. We
could determine the individually most likely state of

column n at time t, h
(n)
t , as the state that maximizes

the E
[
h
(n)
tg

]
, but the transition probability from t− 1 to

this state at time t may be zero, causing this state to be
invalid. Therefore, the Viterbi algorithm considers the
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Symbol Explanation
T Number of frames in the time series
N Number of atomic columns in each frame
G Maximum number of atoms in a column during the time series
H T ×N × (G+ 1) tensor with hidden states: H = {ht}
ht N × (G+ 1) binary state matrix at time t: ht =

{
h
(n)
tg

}
h
(n)
tg Binary state variable: h

(n)
tg = 1 if column n has g atoms at time t

O T ×N matrix with observed states: O = {ot}
ot 1×N observed vector at time t: ot =

{
o
(n)
t

}
o
(n)
t Scattering cross section of column n at time t
I (G+ 1)× 1 initial probability vector: I = {ιg}
ιg Initial probability for a column to have g atoms in frame 1
A (G+ 1)× (G+ 1) transition matrix: A = {Ajg}
Ajg Transition probability from j to g atoms between two frames
µ G× 1 vector with elements µg

µg Average scattering cross section corresponding to g atoms in a column
Mg Library value for a column with g atoms
a Scaling parameter relating the average scattering cross section to the library: µg = aMg

σ Width of the Gaussian distribution around the average scattering cross section

Table I: Notation overview

entire state sequence.

In the following, we will write the actual number of

atoms in column n at time t as q
(n)
t . This quantity equals

the number of atoms q
(n)
t = g for which the previously

introduced binary state variable h
(n)
tg = 1. In order to re-

trieve the realized state sequence, given the observations,
we define the following quantity:

δ(t, n, g) = max
q
(n)
1 ,··· ,q(n)

t−1

[
P
(
q
(n)
1 · · · q(n)t = g, o

(n)
1 · · · o

(n)
t

)]
.

(9)

This expresses the score, i.e. the highest probability,
along a single path, at time t for column n, which ac-
counts for the first t observations of that column, and
ends with g atoms in column n at time t. In the next
frame, t+ 1, we obtain the score by induction:

δ(t+ 1, n, g) = max
0≤j≤G

[δ(t, n, j)Ajg] · N
(
o
(n)
t+1|µg, σ

)
.

(10)

This expression leads to the complete data likelihood
from equation (1) at time T :

P (H = Q,O) =

N∏
n=1

(
max

0≤g≤G
[δ(T, n, g)]

)
, (11)

with the hidden state sequence H equal to the most likely
path Q retrieved by the Viterbi algorithm.

The algorithm calculates the score δ and keeps track
of the number of atoms that maximizes this probabil-
ity in an argument array φ. First, these quantities are

initialized as follows:

δ(1, n, g) = ιgN
(
o
(n)
1 |µg, σ

)
, (12)

φ(1, n, g) = 0, (13)

with δ(1, n, g) the score for state g in column n at time t
and φ the argument array.

The state with the best score for column n at a time t,
is used to determine the scores for all possible states of
that column n at the next time t+ 1, expressed by

δ(t+ 1, n, g) = max
0≤j≤G

[δ(t, n, j)Ajg] · N
(
o
(n)
t+1|µg, σ

)
,

(14)

φ(t+ 1, n, g) = arg max
0≤j≤G

[δ(t, n, j)Ajg] , (15)

where the number of atoms maximising the score is saved
in the argument array.

In the final image of the time series, at time T , the
number of atoms that maximizes the score for column n
is equal to:

q
(n)
T = arg max

0≤g≤G
[δ(T, n, g)] . (16)

Finally, by path backtracking, the most likely hidden
state sequence is retrieved:

q
(n)
t = φ

(
t+ 1, n, q

(n)
t+1

)
, (17)

yielding the the number of atoms in each column at each
time.
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2. DETAILS FOR THE SIMULATIONS OF THE
HYPOTHETIC ADF STEM SERIES

We simulated scattering cross sections corresponding
to hypothetic ADF STEM time series with 40 frames
of a changing Pt nanoparticle with 215 atomic columns,
and a thickness up to 15 atoms. The number of atoms
in a column was allowed to change by ±1 from frame to
frame throughout the time series, with a probability of
10%. The scattering cross sections of each atomic col-
umn are generated from a Pt library, using Poisson ran-
dom draws in order to replicate the uncertainty from the
finite electron dose. Additionally, scan distortion is in-
cluded in the simulation of the scattering cross sections.
Based on a previous study, the effect of scan distortion
has been modeled as a normal distribution, with an ex-
perimentally determined variance of 4.5 ·10−4µg, with µg

the average scattering cross section of an atomic column
with g atoms [4]. For each electron dose, 200 different

noise realizations of such time series were constructed.
Using these data, we compare the atom counts obtained
by the hidden Markov model and the collective hybrid
method with the ground truth.

3. PT TIME SERIES

In Fig. S1, we show all frames of the time series of
the catalyst Pt nanoparticle analyzed in this paper, af-
ter image registration. From this series we can see that
small amounts of sample tilt are present in some of the
images. Furthermore, we see that the particle remains
stable during acquisition. The counting results obtained
by the hidden Markov model of the tilt-compensated time
series are shown in Fig. S2. The experimental time series
and corresponding counting results are also shown in the
Supplementary Animations.

[1] L. R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceedings
of the IEEE 77, 257–286 (1989).

[2] A. J. Viterbi, “Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm,” IEEE
Transactions on Information Theory 13, 260–269 (1967).

[3] G. D. Forney, “The Viterbi algorithm,” IEEE Transactions
on Information Theory 61, 268–278 (1973).

[4] S. Van Aert, A. De Backer, L. Jones, G. T. Martinez,
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Figure S1: Experimental ADF STEM time series recorded of a Pt nanoparticle. Time progresses along the rows.

Figure S2: Counting results obtained by the hidden Markov model for the time series from Fig. S1.


