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Deep convolutional neural networks to restore single-shot
electron microscopy images
I. Lobato1,2✉, T. Friedrich 1,2 and S. Van Aert 1,2✉

Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron
microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving
high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external
factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this
paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a
method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range
of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This
improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings
offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural
analysis and quantification in materials science and biology.
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INTRODUCTION
The quality of modern electron microscopes, such as SEM, STEM,
and TEM, has greatly improved. However, the quality of the
experimental images produced by these instruments is often
compromised by stochastic and deterministic distortions arising
from the instrument or its environment1–3. These distortions can
occur during the acquisition, transmission, or reproduction of the
image. Despite technical improvements in the design of high-
performance electron microscopes1–4, the presence of these
distortions in the recorded images may hinder the extraction of
quantitative information from the samples under study5.
In TEM, images are acquired in a single shot using parallel

acquisition. Here, the main sources of distortions are the detector
noise, which is a combination of shot noise associated with the
uncertainty of photon/electron detection, dark-current noise
resulting from statistical variation in the number of thermally
generated electrons within the detector, and readout noise
resulting from the electronics that amplifies and digitizes the
charge signal. Other sources of distortions for TEM include X-ray
noise, which is produced by X-rays that saturate one or more
nearby pixels as they pass through the detector6,7, and dead pixel
noise, which is caused by permanently damaged pixels on the
sensor and often appears as black spots in the recorded images.
In S(T)EM, images are formed pixel by pixel by scanning a

convergent electron beam across the sample and detecting the
scattered, back-scattered or secondary electrons at each point.
The main sources of distortions are the detector noise, which is a
combination of shot noise hitting the scintillator, Gaussian noise
resulting from the photomultiplier tube (PMT)8, and readout noise
from the electronics that amplifies and digitizes the electron
signals. Unlike TEM imaging, the serial nature of SEM and STEM
can introduce additional distortions into the resulting images due
to time delays between measurements. At high doses, the main
source of nonlinear distortion is the probe’s fly-back time, where
data collection pauses until scanning on the next line resumes.

This produces a net two-dimensional random displacement of the
pixel row known as horizontal and vertical scan distortion. These
nonlinear distortions can often be corrected using iterative
algorithms that require a series of images9,10 or a single image
with a high-resolution periodic structure11,12. Moreover, S(T)EM
images obtained through high-speed scans (dwell time < 1 μs13)
may display a non-uniform scan speed along individual scan lines
resulting in a smearing effect that produces another type of
nonlinear distortion. While these distortions can be partly
compensated for periodic structures13, they cannot be fully
compensated for arbitrary specimens. Other types of distortion
include row-line noise, which is caused by the detector’s non-
response over a few pixels, and X-ray noise, which is produced by
X-rays hitting the detector. These distortions can reduce the
signal-to-noise ratio (SNR) and limit the amount of retrievable
information about the electron-specimen interaction. Although
increasing the beam current or acquisition time can improve the
SNR, it can also increase other types of distortion, such as drift,
translation, shear, rotation, expansion, or contraction of the entire
image. Moreover, it is unsuitable for beam-sensitive materials or
for dynamic imaging requiring a short exposure time for each
frame. Lowering the electron dose can also decrease the quality of
the recorded images and limit the reliability of structural
information extracted from them.
Various algorithms have been developed to improve the SNR of

electron microscopy (EM) images, including spatial filters such as
median filters, Gaussian filters, Bragg filters, and Wiener filters14–16.
More complex methods for denoising EM images include
nonlinear iterative Wiener filtering algorithms17 and block
matching18,19, although they can be computationally intensive.
Another option for improving the SNR is to average a series of
registered frames, using either rigid20 or non-rigid9,10 registration
methods. However, these methods require a high overall electron
dose and repeated recordings of the material. In addition, EM
images often exhibit a combination of different types of
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distortions due to several factors including the instrument
environment, scan instabilities, scan speed, and dose. Therefore,
there is a need for image restoration algorithms specifically
designed for single-shot EM images.
In recent years, machine learning methods based on artificial

neural networks, particularly convolutional neural networks
(CNNs), have become the state-of-the-art approach for various
tasks such as image classification21, image segmentation22, image
denoising23, image restoration24, image deconvolution25, and
image super-resolution26. These methods, which involve adjusting
the weight connections between neurons during training, have
been made possible by the development of techniques such as
the Rectified Linear Unit (ReLU)27, dropout regularization28, batch
normalization29, and improvements in GPU technology. While
CNN-based approaches have achieved strong performance in
denoising specific types of EM images, they are limited by their
reliance on small simulated or experimental datasets and
incomplete modeling of the various types of noise present in
experimental EM data30–35. To the best of our knowledge, there is
currently no algorithm that can effectively compensate for all
types of distortion in a single-shot EM image without requiring
retraining and regardless of the sample being studied.
In this study, we use a machine learning approach to restore EM

images using a Concatenated Grouped Residual Dense Network
(CGRDN) and a combination of loss functions and a generative
adversarial network (GAN)36. This approach not only learns an
end-to-end mapping between distorted and undistorted EM
images, but also a loss function to train this mapping. Since we
only have access to distorted data experimentally, we generate
undistorted and distorted EM images by applying all distortions
that can be corrected on single-shot EM images. By training the
neural network to produce an undistorted output regardless of
the level and combination of distortions in the input, it implicitly
learns to detect and repair the distortions. This approach
demonstrates impressive results for restoring both periodic and
non-periodic specimens with different combinations of severe
distortions. Importantly, the results show that both peak positions
and intensities in atomic-resolution images can be reliably
determined. In addition, the restoration time is only of the order
of seconds for a 2k × 2k image.

RESULTS AND DISCUSSION
Electron microscopy techniques, such as SEM, STEM, and TEM,
each possess distinct sources of noise and feature variations
across both low and high resolutions. Consequently, we have
trained our neural network architecture on an assortment of six
diverse datasets, encompassing low-resolution (LR) and high-
resolution (HR) images for each microscopy modality. Our
empirical findings demonstrate that optimal performance is
achieved by training separate neural networks for LR and HR
features, particularly under low-dose conditions. In these scenar-
ios, the neural network can capitalize on the specific feature
distribution learned during its training phase. Moreover, our
network achieves its best performance when processing raw,
unmodified data, leveraging the prior knowledge acquired during
training regarding the physics of electron detection for each
microscopy modality. It merits emphasis that throughout the
training and validation stages, we exclusively employed synthetic
pairs of undistorted and distorted EM images. Nevertheless, our
testing phase incorporated a heterogeneous set of images. For the
atomic structure quantification process, we utilized the multislice
method to generate the undistorted images, while employing our
specialized noise model to produce their distorted counterparts.
For other types of studies, we relied on experimental images.
While our results primarily center on HR-STEM image restoration,
this emphasis is due to the widespread use of HR-STEM for
analyzing and quantifying atomic structures. However, our

findings are similarly transferable to other microscopy modalities.
It is imperative to underscore that although a fully convolutional
neural network is trained on a specific image size, it exhibits
remarkable adaptability in handling images of varying dimensions.
This versatility remains valid as long as the features identified
during the training phase are manifested in the test image,
irrespective of its size.

Implementation details and training
Moving on to implementation and training, the optimization of
the neural network efficiency relies on selecting appropriate
hyperparameter values. Therefore, we conducted an ablation
study concerning model size, elaborated in the Supplementary
Information. Specific network components, such as residual dense
blocks (RDB) and grouped residual dense blocks (GRDB), are
maintained at their maximum allowable values, which are
constrained by our hardware capabilities. We set 4 × 4 filters for
up/down-convolutional layers with strides of 2 and 1 × 1 filters for
feature fusions. Otherwise, we used 3 × 3 filters with stride 1. Zero-
padding was used for all convolutional layers. Each RDB has a
growth rate of 32 channels, 8 pairs of convolutional layers, 4 RDB,
4 GRDB and ReLU activation. The initial convolution layer output
has 64 channels and the final convolutional layer has 1 output
channel. We would like to point out that the initial convolution
layer output, growth rate and the number of convolutional layers
in each RDB was obtained as trade-off between the accuracy and
our hardware constraints. The above parameters produce a model
of 152 layers with 7.04M parameters. The model is implemented
using the Tensorflow 2.10 framework and is trained with a NVIDIA
GTX Titan Volta GPU.
Our learning policy is based on Adam optimizer37 with β1= 0.5,

β2= 0.999, ϵ= 1 × 10−7 and it is divided in three stages. In the
non-adversarial first part, the generator is trained to minimize the
L1 loss for 2 epochs with a learning rate of 5 x 10−5. In order to
prevent training instability and bad local optima, the learning
rates were warmup for 65 x 103 steps38,39. This is followed by a
second non-adversarial part in which the generator is trained to
minimize the pixel-wise loss (Eq. (14)) with λ1= 2.0, λ2= 1.0,
λmlwt= 0.25, λfs= 0.10, γ= 0.125, λmean= 1.0, and λstd= 0.5. At this
stage, the network was trained for 2 more epochs with a learning
rate of 2.5 × 10−5. In the third part, our generator is trained in
adversarial manner as part of the cGAN to produce realistic images
with λAdv= 2 x 10−5. We use a learning rate of 1.25 × 10−5 and
1 × 10−4 for the generator and discriminator, respectively, and
halved at each epoch. For the adversarial training, we follow the
standard approach from ref. 40 in which we alternate between one
gradient descent step on D and G networks. In this part, the
network was trained for 3 epochs. Furthermore, each epoch of the
training process required three days of processing time on a single
NVIDIA GTX Titan Volta GPU.
The mini-batch size is set to 4. Each of our six datasets included

2.5 million training examples and 100,000 validation examples, all
of which were produced through our data generation process. The
simulation of each image pair takes approximately 1.5 seconds,
utilizing a single processing core operating at a speed of 3.5 GHz.
The input data has a spatial size of 256 by 256 pixels. We
encountered some issues during training, including loss spikes
and instability, which were caused by the diversity of samples,
orientations, distortions, and the combination of loss functions. To
solve this issue, we implemented gradient clipping, which restricts
the range of the gradients between –1 and 1, to prevent sudden
spikes in loss. We would like to emphasize that throughout the
training, we diligently monitored for signs of overfitting and found
no instances, underscoring the reliability and robustness of our
model. Details about the ablation study for the CGRDN
architecture, which is based on the L1 metric as a function of
the model size, are provided in the Supplementary Information.
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Comparison to state-of-the-art algorithms
In this section, we compare the performance of three different
image-denoising architectures: the Grouped Residual Dense
Network (GRDN)23, the Multi-resolution U-Net (MR-UNET)31, and
our proposed architecture, CGRDN. To evaluate the performance
of these architectures, we use the widely recognized peak signal-
to-noise ratio (PSNR) metric on the validation dataset, which is
defined as follows:

PSNR ¼ 10log10
MAX2

MSE

� �
; (1)

where MAX denotes the maximum possible pixel value of the
images, and MSE represents the mean squared error between the
distorted and undistorted images. However, it is important to note
that PSNR only measures the pixel-wise differences between the
original and reconstructed images and does not account for other
crucial factors such as visual perception and structural similarity. The
GRDN architecture was previously ranked first in terms of PSNR and
structure similarity index in the NTIRE2019 Image Denoising
Challenge. The MR-UNET extends the functionality of the decoder
in a U-Net41 by adding additional convolutional layers to the hidden
layers in order to produce coarse outputs that match low-frequency
components. The results of our comparison are summarized in
Table 1, which shows the number of parameters and the resulting
PSNR for each architecture, and show that the GRDN and CGRDN are
more efficient architectures because they require approximately
seven times fewer parameters than the MR-UNET, while still

achieving a higher PSNR. It is interesting to note that our CGRDN
architecture achieved a higher PSNR than the GRDN, while only
requiring an additional 20,000 parameters.
We also compared the performance of our image restoration

network to the Block-matching and 3D filtering (BM3D)18

algorithm in terms of PSNR. BM3D is a widely used technique
for removing noise from images through a process called
denoising. It segments the image into overlapping blocks and
identifies similar patterns among them to estimate the original
image and reduce noise. BM3D has demonstrated effectiveness in
denoising images with high levels of noise and serves as a
benchmark for image-denoising algorithms in image processing.
The average PSNR of BM3D and our network on the validation
dataset was 30.45 and 36.96 dB, respectively. These results
demonstrate that our network outperforms BM3D by a significant
margin of 6.51 dB. Figure 1 illustrates the performance of our
network and BM3D on two randomly generated, high-resolution
STEM images with standard experimental noise values. These
images were simulated using the procedure outlined in the
Methods section. The figure displays the original distorted images
Fig. 1a, e, and undistorted images Fig. 1d, h, as well as the
denoised output from BM3D Fig. 1b, f, and the restored output
from our network Fig. 1c, g.
These results demonstrate that our image restoration network

significantly enhances image quality, as measured by PSNR.
However, it is noteworthy that PSNR is not always a reliable
indicator of image quality since it merely measures pixel-wise
differences between original and reconstructed images and
overlooks other critical factors such as visual perception and
structural similarity. Hence, it is crucial to employ various image
quality metrics, along with PSNR, to obtain a more comprehensive
evaluation of the performance of image restoration techniques.

Atomic structure quantification
While the CNN was trained to restore images of a wide variety of
imaging modes, STEM is of particular interest since it is routinely

Fig. 1 Comparison of the CNN restoration to the BM3D algorithm. CNN restoration results compared with BM3D in terms of PSNR for two
random simulated STEM specimens using standard experimental noise values. a, e Simulated STEM images. b, f Output from BM3D.
c, g Output from CNN. d, h Ground truth STEM images.

Table 1. PSNR denoising performance comparison of different
network architectures.

Method # parameters PSNR

MR-UNET31 51.7M 36.70 dB

GRDN23 7.02M 36.90 dB

CGRDN this work 7.04M 36.96 dB
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used for the quantification of atomic structures42–44 in terms of
atomic column positions and their corresponding scattering cross
sections (SCS), which allows us to study the impact of the
proposed image restoration method quantitatively. The probe
position integrated scattering cross-section, short SCS, in atomic-
resolution STEM images is defined as the integrated intensity of an
atomic column, which is typically modeled as a 2D Gaussian
function. Since the SCS scales with the atomic number ≈ Z1.745,46

and mostly increases monotonically with thickness for large
collection angles, it is routinely used for atom counting. The
evaluation of the effect of image restoration on the quantitative
assessments of STEM images is done for three complementary
case studies, using MULTEM47,48 to create multislice simulations
and the StatSTEM software for all model fittings44. All evaluations
are based on 100 distortion/noise realizations for each dose
setting.

1. We demonstrate the effect of image denoising with an
idealized setup in analogy to the study conducted in ref. 44,
where the precision of the determination of the location and
SCS of an atomic column was determined over a wide range
of signal-to-noise-ratios (SNRs) using pure Shot noise. This
setting allows the comparison to the theoretical limit of
variance for unbiased estimators, the so-called
Cramér–Rao–Lower Bound (CRLB). The simulated STEM
dataset is a bulk Pt crystal in [001] orientation and contains
STEM images over 75 depth sections with unit cell spacing
in z-direction.

2. A more practical example, that includes crystal irregularities,
is chosen to determine the impact of a combination of
noise, scan-line-distortions and fast-scan distortion. In this
case, we evaluate the mean absolute error (MAE) for atomic
column positions and the mean absolute percentage error
(MPE) for the SCSs of atomic columns, as well as the variance
of these measurements. This serves to show in particular the
independence of the approach on the structural periodicity
for atomic-resolution STEM images.

3. For a simulated Pt nanoparticle, it is demonstrated that
distortion correction yields not only a more accurate
localization of atomic columns but also enables more
reliable atom counting.

Details regarding the simulation settings for all samples are
provided in the Supplementary Information. The results of the first
study are shown in Fig. 2. Examples of the underlying STEM images
are given for the extremes of SNRs (i.e., the smallest thickness and
lowest dose, and largest thickness and highest dose) for raw and
restored images in Fig. 2e–h. Comparing Fig. 2e, f, it can be visually
observed that even at a very low dose, the CNN can faithfully
recover the underlying structure. The notable outcomes observed
in these figures are primarily attributed to our extensive training
dataset. This dataset enables the CNN to accurately model the
Poisson noise distribution, inherently linked to the signal, providing
the CNN with a significant advantage in terms of prior knowledge.
It is essential to emphasize that our demonstration primarily
considers Poisson noise as the sole source of distortion. In real-

Fig. 2 Comparison of the precision in estimating unknown structure parameters with and without the use of the CNN. The precision of
atomic column position and SCS measurements have been obtained from a series of Pt-bulk samples with a thickness varying from 2 to 75
atoms. a Precision of the atomic column locations for a dose of 5e2eÅ−2. b Precision of SCS measurements for a dose of 5e2eÅ−2. c Precision of
atomic column locations for a dose of 5e4eÅ−2. d Precision of SCS measurements for a dose of 5e4eÅ−2. e Example of a raw STEM image at
z= 2 and dose = 5e2eÅ−2. f Example of a restored STEM image at z= 2 and dose = 5e2eÅ−2. g Example of a raw STEM image at z= 75 and
dose = 5e4eÅ−2. h Example of a restored STEM image at z = 75 and dose = 5e4eÅ−2. The error bars indicate 95% confidence intervals.
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world scenarios, microscopy data often encounter various noise
sources, which makes our demonstration somewhat idealized. The
effect of the CNN is measurable both in terms of the precision with
which atomic columns can be located, and in SCS measurement
precision, and is particularly pronounced in the low dose range as
illustrated in Fig. 2a, b. As the dose increases, the precision of the
structural measurements of raw and restored data eventually
converges (Fig. 2c, d). Interestingly, these results demonstrate that
the theoretical precision limit, as defined by the CRLB, can be
surpassed through the application of image restoration. It is vital to
emphasize that such an observed outperformance should not
automatically be interpreted as a cause for concern regarding
overtraining. From a physics perspective, this outcome can be
expected. In fact, we calculated the CRLB for the conventional case
where no prior knowledge of the parameters is assumed. In
contrast, it can be expected that prior knowledge is included in the
CNN due to the extensive training it undergoes.
The restoration results in the first example arguably benefit

from the underlying perfect crystal symmetry, which is why we
also test the CNN for imperfect structures. The Pt-bulk model
depicted in Fig. 3a is in [112] zone axis orientation, six unit cells
thick and contains a unit edge dislocation of Burgers vector b= 1/
2[110] in the (111) glide plane; a dislocation commonly observed
in fcc metals49. The structure was created using the Atomsk
software, which determines atom positions corresponding to the
displacement fields predicted by the elastic theory of disloca-
tions50. The simulated HAADF-STEM images were subjected to
varying noise levels from 5e2eÅ−2 to 5e4eÅ−2, and further
corrupted by scan-line distortions as outlined in the Methods
section. Example reconstructions for raw images at doses of
5e2eÅ−2 and 5e4eÅ−2 are shown in Fig. 3b, c, respectively, in
Fig. 3d, e. In the low-dose raw image, individual atomic columns
are hardly recognizable. Without the prior knowledge of the
atomic column positions, any attempt at model fitting would have
to overcome the challenge of performing reliable peak finding
first, which is a factor not considered here. The reconstruction of
this image, shown in Fig. 3d, on the other hand, displays very clear
peaks. A Burgers circuit is superimposed on the image to highlight
that despite the poor separation of columns in the raw image, the
dislocation with its correct Burgers vector b is maintained,
meaning that the structure as a whole is retrieved correctly,
albeit the individual column positions may not be fully accurate as
can be seen in the mean absolute position error of the columns
around the center of the dislocation (columns within the red circle

in Fig. 3a for low doses shown in Fig. 3f. However, the error drops
rapidly with increasing dose and shows a clear improvement
against raw images. The position accuracy is therefore not only a
result of denoising but also of the accurate correction of scan-line
and fast-scan distortions. The comparatively high accuracy for the
raw image fitting at low doses can be attributed to the fact that
correct initial column positions are given for the fitting procedure.
Since the column can hardly be located in the noisy images, the
fitting algorithm on average does not move the position much
away from this initial position. The CNN, on the other hand,
reconstructs a clearly visible atomic column, but the available
information in the underlying image is insufficient for accurate
positioning. However, the proper retrieval of the dislocated atomic
column at higher doses shows that the CNN is not by default just
picking up on periodicity but faithfully recovers the atomic
structure also in the presence of non-periodic features in atomic-
resolution STEM images.
Also the SCS measurements improve in accuracy by the

restoration, which would translate directly into improvements
for atom counting studies. An example of such an atom counting
scenario is presented in Fig. 4. These findings were generated
from a simulated spherical Pt nanoparticle, utilizing the multislice
method, and possessing a diameter of 11 unit cells in the [100]
zone axis orientation. The distortion and noise parameters were
consistent with those outlined in the preceding example. Atom
counts were obtained by matching retrieved SCS values against
simulated library values51. The improvement in column position
measurements over all dose settings again indicates the proper
correction of scan-line and fast-scan distortions. The improvement
of SCS measurement accuracies, especially at low-dose conditions
greatly decreases the chance of miscounting atoms in the
structure, which in turn may be very beneficial, e.g., for the
reconstruction of 3D information from atom counts52,53.

Experimental image restorations
One of the main advantages of our image restoration method is
that the training data is generated using realistic physical models
of the noise found in various microscopy modalities, as well as for
an appropriate range of values for the noise model parameters, as
detailed in the Methods section. This methodology allows for the
direct application of our network to experimental data, without
requiring additional training for a particular specimen or micro-
scope settings. Figure 5 illustrates the effectiveness of our
approach on diverse types of random experimental microscopy

Fig. 3 Application of the CNN restoration to an imperfect crystal structure. a Schematic of the Pt structure in [112] zone axis with a unit
edge dislocation of Burgers vector b= 1/2[110] in the (111) glide plane. b Corrupted raw HAADF-STEM image with a dose of 5e2eÅ−2.
c Corrupted raw image with a dose of 5e5eÅ−2. d Restored image with a dose of 5e2eÅ−2. e Restored image with a dose of 5e5eÅ−2.
f Quantification results for the atomic column positions and scattering cross sections of the atomic columns around the center of the edge
dislocation (marked with red circles in panel (a)). The error bars indicate 95% confidence intervals.
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images. The top row of this figure shows raw experimental images
for HR-STEM, LR-STEM, HR-TEM, LR-TEM, HR-SEM, and LR-SEM. The
bottom row shows the corresponding restored versions of these
images.
These results highlight the capability of the trained networks on

experimental data and their ability to effectively handle a wide
range of microscopy images with varying resolution and noise
levels. Although we initially conducted only a qualitative
comparison, we have subsequently carried out a more rigorous
quantitative analysis between the raw and the restored data. Our
first point of comparison focuses on data depicting periodic
features, as shown in Fig. 5a–c. Fourier Transform analysis reveals
that our network enhances the information content in these
images. The second point of comparison concerns SEM data
containing several particles, as illustrated in Fig. 5e. Our results
show that a standard particle analysis algorithm can greatly
benefit in the segmentation process when the images are pre-
processed with our network. This enables a more accurate count
of the particles detected in the image. Further details concerning
the performance of our network on these images can be found in
the Supplementary Information. It is important to note that in this
study, “high resolution” refers to images with round and
symmetrical features, while “low resolution” refers to images with
a variety of different features. Additional examples of restored
experimental images for each microscopy modality can be found
in the GitHub repository https://github.com/Ivanlh20/tk_r_em.

Figure 6 illustrates the performance of our HR-STEM network
when faced with a variety of experimental distribution shifts,
which were not adequately considered in the initial dataset
utilized for training our models. This inadequacy stems from the
use of imprecise physical noise models and/or the incorrect
selection of suitable parameter ranges for generating distorted
data54,55. Figure 6a, b shows two experimental STEM images that
were acquired using a Fei Titan3TM S/TEM microscope. The images
were obtained using fast scanning with dwell times of 0.2 and
0.05 μs, respectively. The importance of accurately modeling fast
scan distortion is evident from Fig. 6f, g. In these figures, our
network architecture was trained using a model, which was not
sufficient to completely compensate for the spread of pixel
intensities along the scanning direction (see Eq. (48) in the
Methods section). If the dwell time decreases, these image
artifacts become more pronounced, as shown in Fig. 6g. While the
manufacturer recommends using dwell times larger than 0.5 μs to
avoid image artifacts, correctly modeling fast scan distortion
allows us to fully compensate for these artifacts, as shown in Fig.
6k, l. The study of beam-sensitive materials and dynamic imaging
will greatly benefit from the compensation of this distortion.
Figure 6c shows a registered STEM image that contains
interpolation noise. The interpolation process changes the
dominant noise distribution, which can impact the restoration
process, especially at low doses, as shown in Fig. 6h where some
atomic columns appear blurred. However, this issue can be
addressed by including this type of noise in the training dataset,

Fig. 4 Performance of the CNN restoration for atom counting. Quantification results for a spherical Pt nanoparticle with a diameter of 11
unit cells in [100] orientation. The values are based on all 333 atomic columns for 100 noise realizations. a The mean absolute error of the
estimated atomic column positions. b The mean absolute percentage error of the fitted scattering cross sections, which are being used to
estimate atom counts in each column. c The fraction of atomic columns with correctly estimated atom counts. d Simulated spherical Pt
nanoparticle. The error bars indicate 95% confidence intervals.

Fig. 5 Experimental image restoration for various microscopy modalities. Images (a)–(f) are the original experimental images. Images (g)–(l)
are the restored versions. Images (a) and (c) are from our experimental datasets. Images (b) and (d) are taken from ref. 92, while images (e) and
(f) are from ref. 93.
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as explained in the Methods section. The effect of including this
noise in the training dataset on the restored image can be seen in
Fig. 6m, where all atomic columns become clearly visible.
Figure 6d exhibits a STEM image with strong Y-jitter distortion. The

impact of an incorrect range of values for this distortion during data
generation on the restored image can be seen in Fig. 6i, where some
atomic columns appear split. After retraining the data with newly
generated data containing the proper range of Y-jitter distortion, the
neural network can correctly compensate for this image artifact, as
shown in Fig. 6n. In Fig. 6e, an experimental STEM image of a
nanoparticle taken using a gas cell holder is shown56. The dominant
sources of noise in this image are detector noise and fast scan noise.
Figure 6j shows a restored STEM image produced by our network
architecture that was trained using a dataset generated with Shot
noise as the only source of STEM detector noise (as described by Eq.
(45) in the Methods section). However, this restored image exhibits
strong artifacts despite using an accurate model for fast scan noise
(as described by Eq. (47) in the Methods section). After retraining our
network architecture with a new dataset that includes the correct
STEM detector noise (as described by Eq. (46) in the Methods
section), the restored image in Fig. 6o shows a significant reduction
in artifacts. Nonetheless, it is worth mentioning that some of the
remaining artifacts in the image could be attributed to other sources
of distortion not accounted for in our data modeling, such as the gas
holder effect, charging artifacts, and residual electronic noise.
Another example that highlights the importance of properly

modeling noise and distortion sources can be seen in Fig. 7. In this
figure, we compare the reconstruction performance of our CNN,
AtomSegNet33, and Noise2Void-NN (N2V)57, which was retrained

on the presented experimental image itself. The sample is a
BaHfO3 nanoparticle (Fig. 7-③) embedded in a superconducting
REBa2Cu3O7−δ (REBCO) matrix58,59 (Fig. 7-②), which was grown on
a SrTiO3 substrate (Fig. 7-①). While all three networks successfully
remove the noise from the image, there are notable differences in
the reconstruction results. In region①, the N2V reconstruction
recovers all the weaker intensities of the Ti+ O columns to some
degree, which is not the case for the AtomSegNet reconstruction.
There, some of the columns blur or even disappear. Our CNN
reliably recovers all atomic columns with superior contrast to the
other two methods. Similar improvements are evident also in
region② but most notably in region③. This region at the top of the
image is also degraded, presumably by either FIB damage or
carbon contamination. In both N2V and AtomSegNet reconstruc-
tions, features tend to blur into diagonal streaks, while our CNN
recovers clearly distinguishable atomic columns and, given that
the BaHfO3 nanoparticle grew epitaxially on the SrTiO3 substrate,
that is indeed what would be expected60. Considering the N2V
network is a generic denoising network, the results are quite
remarkable, albeit the additional training step is somewhat
inconvenient from a user perspective.
These results illustrate that the network presented in this work

is accurate not only in terms of perceived contrast enhancement
but also quantitatively, thereby boosting the accuracy and
precision of atomic structure determination in ADF-STEM
studies. This superior performance, compared to other networks,
arises not just from the latest advances in deep learning but also
from the development of accurate and physically meaningful
models that account for all distortions specific to HAADF-STEM.

Fig. 6 Raw STEM images alongside the results of a restoration process employing inaccurate and accurate models of the noise. Images
(a)–(e) are the original experimental STEM images. Images (f)–(j) are the restored versions of the images trained with distorted data based on
inaccurate noise models. Images (k)–(o) are the restored versions of the images trained with distorted data based on accurate noise models.
Images (a)–(c) were obtained from our experimental datasets, whereas (d) and (e) were obtained from refs. 94 and 56, respectively.
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Although our networks have demonstrated impressive results, it
is crucial to be aware of potential pitfalls that could lead to
incorrect scientific conclusions. Such pitfalls may arise when the
network is applied to data that fall outside the manifold
encompassed by the training data. Indeed, this situation can
significantly compromise the quality of the restored data by
introducing unwanted artifacts. These artifacts could, in turn,
adversely affect the interpretation of the results, as elaborated in
the Supplementary Information.
In addition, our research indicates that while the neural network

effectively restores signals in the presence of a mixture of correlated
and uncorrelated noise, it encounters challenges when uncorrelated
noise greatly exceeds the recorded signal. Such high level of
uncorrelated noise can lead to the false detection of atomic features,
a scenario exemplified in Supplementary Fig. 2, where the recorded
data is affected by Gaussian noise. The network, misinterpreting
these patterns as real features, tries to eliminate the noise, which can
result in the production of hallucinatory artifacts. However, this
problem is less common with correlated noise because it includes
signal information that the network can decode, learning from its
intricate relationship with the data.

METHODS
In single-shot EM image restoration, the goal is to estimate an
undistorted image y from a distorted image x. To achieve this, we
train a generator G using a deep neural network approach, which
learns to estimate the corresponding undistorted image y for a
given input x. During the training procedure, a loss function is
minimized to evaluate the quality of the results.
Traditionally, pixel-wise losses such as L1 or L2 have been

used to obtain quantitative results for the image restoration

problem61. However, these losses often lead to blurred images
that do not look realistic. To address this, we propose a conditional
generative adversarial network (cGAN) that trains both a generator
and a discriminator. The generator G maps the distorted image x
to the undistorted image yg= G(x), and the discriminator is trained
to differentiate between real and generated images62. We use
pixel-wise losses to ensure quantitative results while restricting
the GAN discriminator to model high-frequency details, resulting
in sharper and more realistic restored images.
Our training is supervised, requiring input pairs of distorted and

undistorted EM images. However, in practice, we only have access
to distorted EM data. We can partially overcome this limitation by
collecting time series EM images and generating an undistorted
image through an averaging procedure, based on both rigid and
non-rigid registration. Nevertheless, the combination of high-
speed scans, jitter, and low-dose conditions results in highly
correlated distortions13, which compromise the reliability of the
averaging process. In addition, prolonged exposure to the
electron beam can lead to charging, beam damage, atom
hopping, and rotation of the specimen under study, thereby
further undermining the averaging procedure. Consequently, the
only viable solution is to train the GAN using synthetic pairs of
undistorted and distorted EM images.

Network architecture
A GAN40 is a powerful framework that encourages predictions to
be realistic and thus to be close to the undistorted data
distribution. A GAN consists of a generator (G) and discriminator
(D) playing an adversarial game. A generator learns to produce
output that looks realistic to the discriminator, while a discrimi-
nator learns to distinguish between real and generated data. The
models are trained together in an adversarial manner such that

Fig. 7 Comparison of different CNN-restoration approaches on an experimental HAADF-STEM dataset. The results are shown for a BaHfO3
nanoparticle (③) embedded in a superconducting REBa2Cu3O7−δ (REBCO) matrix (②), which was epitaxially grown on a SrTiO3 substrate(①). Images
were acquired on a non-probe-corrected Titan microscope with 300 keV at KIT Karlsruhe. The data are described in detail in refs. 58 and 59.
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improvements in the discriminator come at the cost of a reduced
capability of the generator and vice versa. The GAN involves the
generation of conditional data, which is fed to the generator and/
or the discriminator36. The generator and discriminator architec-
tures proposed here are adapted from those described in refs. 63

and 62, respectively. The details of these architectures are
discussed in the following sections.

Generator architecture. Our generator architecture, called Con-
catenated Grouped Residual Dense Network (CGRDN), is shown in
Fig. 8. This network architecture is an extension of the GRDN for
image denoising23, which was ranked first for real image
denoising in terms of the PSNR and the structure similarity index
measure in the NTIRE2019 Image Denoising Challenge64. The
GRDB architecture is shown in Fig. 8a. The building module of this
architecture is the residual dense block (RDB)63, which is shown in
Fig. 8b. The original GRDN architecture can be conceptually
divided into three parts. The first part consists of a convolutional
layer followed by a downsampling layer based on a convolutional
stride, the middle part is built by cascading GRDBs and the last
part consists of an upsampling layer based on transposed
convolution followed by a convolutional block attention module
(CBAM)65 and a convolutional layer. The GRDN also includes the
global residual connection between the input and the last
convolutional layer. In the original version of the GRDN23, residual
connections are applied in three different levels (global residual
connection, semi-global residual connection in GRDB, and local
residual connection in each RDB). However, in the version
submitted for the NTIRE2019 Image Denoising Challenge64,
residual connections for every 2 GRDBs were included.
Although it has been demonstrated that one architecture

developed for a certain image restoration task also performs well
for other restoration tasks62,63,66,67, an architecture for a given task
will be data dependent. When applied to EM data, we found out
that 2 modifications of GRDN are necessary in order to best handle
the nature of our data, which involves different types and levels of
distortions with high correlation between pixels:

1. The cascading of the GRDN is replaced by feature
concatenation, feature fusion, and a semi-global residual
connection. This allows us to exploit hierarchical features in
a global way, which is important for highly correlated pixels
that extend over a large area of the image.

2. The CBAM, which is included in ref. 63 is removed from our
network. The reason for this is the use of large image sizes
(256 × 256) for training, which reduces its gain23.

Discriminator architecture. The purpose of the discriminator
network is to judge the quality of the output data resulting from
the generator network. For our discriminator, we use the 70 × 70
convolutional patch discriminator described in ref. 62 with some
minor modifications. The zero-padding layers were removed and
batch normalization layers29 were replaced by instance normal-
ization layers (IN)68. Figure 9 shows the structure of the
discriminator network. The result of the network is the non-
transformed output C(y) or C(yg) of dimensions 32 × 32.
Some benefits of the discriminator architecture shown in Fig. 9

include that it is fully convolutional and it only penalizes structure
at the scale of image patches. Furthermore, we enhance our
discriminator based on the relativistic GAN, which has been shown
to improve the data quality and stability of GANs at no
computational cost69. Different from the standard discriminator,
which estimates the probability that input data is real, a relativistic
discriminator predicts the probability that real data y is relatively
more realistic than generated data yg= G(x). If we denote our
relativistic average patch discriminator as DRap(x), then the output
of the discriminator can be written as:

DRap y; yg
� �

¼ σ CðyÞ �EygfCðygÞg
� �

(2)

DRap yg; y
� �

¼ σ CðygÞ �EyfCðyÞg
� �

(3)

where σ is the sigmoid function and Ex1;:::xnf:g is an operator
representing the expectation value computed on the variables

Fig. 8 Concatenated Grouped Residual Dense Network (CGRDN) architecture for EM image restoration. a Overall architecture, b GRDB
architecture used in (a), c RDB architecture used in (b).

Fig. 9 Patch discriminator architecture. The result of the network is the non-transformed output C(y) or C(yg).
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x1, . . . xn. In the next section, these functions will be used in the
definition of the loss functions.

Loss function
The loss function serves as the effective driver of the network’s
learning. Its objective is to map a set of parameter values of the
network onto a scalar value, thereby enabling the ranking and
comparison of candidate solutions. Ideally, one would directly
incorporate the physics that govern the distribution of noise-free
EM images into the network’s architecture. However, achieving
this integration has proven nontrivial, and, to date, no successful
method for such an incorporation has been identified. As an
alternative, we have opted to embed the physics governing this
distribution into our meticulously designed loss functions. In our
case, both the discriminator and adversarial losses are founded
upon the relativistic average GAN loss, as defined in ref. 69. The
various contributions of these loss functions are detailed in the
subsequent sections.

L1 loss. Pixel-wise losses are advantageous to keep quantitative
information of the ground-truth image. In this work, we used the
L1 loss, which as compared to the L2 loss yields less blurred
results61. The L1 loss can be written as:

L1 ¼ Ey;ygfwyky � ygkg; (4)

wy ¼ 1=max σmin; Stdyfyg
� �

(5)

where wy is a weighting factor that gives equal importance to
each example regardless of its contrast, σmin is a small value to
limit the maximum scaling factor, and Stdx1;:::xnf:g is an operator
that represents the standard deviation calculated on the variables
x1, . . . xn.

L2 loss. Due to the design of our architecture, which is learning
the residual difference between the distorted and undistorted
image and based on the fact that distorted images can have few
outliers in the distribution of pixel intensities (i.e. X-rays hitting the
EM detector, saturation of the detector, low dose and dead-pixels),
the output of the generator will show a strong correlation at those
pixel positions. For this reason, we also used the L2 loss which
strongly penalized the outliers:

L2 ¼ Ey;ygfwyky � ygk2g (6)

Multi-local whitening transform loss. Local contrast normalization
(LCN) is a method that normalizes the image on local patches on a
pixel basis70. A special case of this method is the whitening
transform which is obtained by subtracting the mean and dividing
by the standard deviation of a neighborhood from a particular
pixel:

ySij ¼ yij �EŜfyi;jg
� �

=max σmin; StdŜfyi;jg
� �

; (7)

where Ŝ is a local neighborhood around the pixel i, j of window
size S. The whitening transform makes the image patches less
correlated with each other and can highlight image features that
were hidden in the raw image due to its low local contrast. This
effect can be seen in Fig. 10a, which shows a simulated ADF-STEM
image of a random nanoparticle on a carbon support. The edge of
the nanoparticle shows low contrast due to its reduced thickness,
resulting in lower intensity values. Based on this observation, we
introduce a multi-local whitening transform (MLWT) loss, which
pays more attention to fine details independent of the intensity
value. Specifically, the generated and the ground-truth image are
local whitening transforms corresponding to different window
sizes of 2 × 2, 4 × 4, 8 × 8, and 16 × 16 pixels.
Using different window sizes for the calculation of the

whitening transform, we ensure that the relevant features present
in the image are highlighted independently of its pixel size. Figure
10b–e shows an enhancement of the edge of the nanoparticle as
well as the carbon support after applying the whitening transform
to Fig. 10a by using different window sizes.
Then, we calculate the average L1 loss for these four images:

Lmlwt ¼ 1
4

X
S¼2;4;8;16

EyS;ySg
fkyS � ySgkg: (8)

Fourier space loss. In electron microscopy, Fourier space contains
crucial information about the sample and any distortions that may
be difficult to discern in real space. To address this issue, we
introduce the Lγ loss in the 2D Fourier transform of the difference
between the generated data yg and the ground-truth image y.
Nevertheless, it is noted that high-frequency information typically
possesses smaller values than low-frequency information. Conse-
quently, to accentuate the high-frequency information, we apply a
power transform to the aforementioned difference and define the
loss function as follows:

Lfs-γ ¼ Ey; yg jFðy � ygÞjγ
h i

; (9)

Here, F symbolizes the 2D Fourier transform, and γ is a
parameter in the range (0.0, 1.0]. In our investigation, we utilize
γ= 0.125.

Constraint losses. Some important parameters for EM quantifica-
tion are the total intensity and the standard deviation of the
images. The reason for this is that they carry information about
physical quantities of the sample or microscope, such as the
number of atoms, defocus and spatial and temporal incoher-
ence71,72. Therefore, we encourage that the restored images have
to minimize the above quantities, resulting in the following two
loss functions:

Lmean ¼ kEyfyg �Eygfyggk; (10)

Lstd ¼ kStdyfyg � Stdygfyggk: (11)

Fig. 10 Calculation of the whitening transform for different window sizes. a Undistorted ADF-STEM image of a nanoparticle on a carbon
support. Images are generated by applying the whitening transform to (a) by using different window sizes of b 2, c 4, d 8 and e 16.
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Adversarial loss. The job of the relativistic adversarial loss is to
fool the discriminator, which can be expressed as:

LAdv ¼ �Ex;y log 1� DRapðy; ygÞ
� �n o

�Eyg log DRapðyg; yÞ
� �n o

; (12)

with DRap(y, yg) and DRap(yg, y) defined in Eqs. (2) and (3),
respectively. This definition is based on the binary cross entropy
between the ground-truth and the generated images. Different
from the conventional adversarial loss, in which y is not used, our
generator benefits from y and yg in the adversarial training.

Generator loss. Our total generator loss function can be written
as:

LG ¼Lpixel�wise þ λAdvLAdv; (13)

Lpixel�wise ¼ λ1L1 þ λ2L2 þ λmlwtLmlwt þ λfs�γLfs�γ
þ λmeanLmean þ λstdLstd;

(14)

where Lpixel�wise is our pixel-wise loss function, λ1, λ2, λmlwt, λfs−γ,
λmean, λstd and λAdv are the weighting parameters to balance the
different loss terms.

Discriminator loss. Symmetrically to the relativistic adversarial
loss, the relativistic discriminator is trying to predict the probability
that real data is relatively more realistic than generated data, and
it can be expressed as:

LD ¼ �Ex;y log DRapðx; y; ygÞ
� �n o

�Ex;yg log 1� DRapðx; yg; yÞ
� �n o

: (15)

Data generation
While it is possible to fully describe the electron-specimen
interaction and image formation in an electron microscope,
generating realistic EM image simulations for specimens on
support with sizes of a few nanometers is too time-consuming
even with the most powerful GPU implementations of the
multislice method47,48. However, our goal is to train a neural
network to correct EM distortions without the need to know the
specific specimen or microscope settings. Therefore, we only need
to generate undistorted images that closely mimic the appearance
of real EM data, while the EM distortions must be accurately
modeled. The generated undistorted images should also incorpo-
rate the physical parameters of both the specimen and the
microscope settings. For high-resolution features, the foundation
is an atomic object, the parameters of which may encompass
atomic sizes, atomic distances, atomic vibrations, lattice para-
meters, and relative intensities of atomic species. Conversely,
when generating low-resolution images, the building blocks are
points, to which general objects can be assigned. In addition, the
generated undistorted images should be linked to parameters
such as acceleration voltage, aberrations, magnification, detector
sensitivity, detector angles, and the transfer function of the
detection system.

Specimen generation. In order to optimize the simulation
process, we generate a specimen that fully covers the extended
simulated box size l̂

e
xyz . This is an expanded version of the required

simulation box size l̂xyz . The calculation of l̂xyz starts by randomly
selecting a pixel size dr within the range [0.025, 0.90]Å. This range
is chosen specifically to capture most of the high-resolution
features typically observed in EM images. When low-resolution
features are being created, the same simulation box size is
retained primarily for optimization purposes. However, relevant
parameters are adjusted to ensure a consistent pixel size range. By
using the required image size (nx, ny), nz ¼ maxðnx ; nyÞ and dr, the
required simulation box size can be expressed as
l̂xyz ¼ fnxdr; nydr; nzdrg. From these values, an extended number
of pixels nei ¼ ni þ roundðdext=drÞ and an extended simulation

box size l̂
e
xyz ¼ fnexdr; neydr; nezdrg are obtained, where dext is the

maximum correlation distance for a given value of scanning
distortions. The specimen generation is divided in 3 steps.
The first step of specimen generation involves randomly

selecting a specimen type from the following options: crystalline
specimen, amorphous specimen, or individual points. If the
selected specimen is crystalline, the generation process starts by
randomly choosing up to 16 unique atomic types with atomic
number Z in the range [1, 103]. The crystallographic space group is
randomly chosen from a range [1, 230]. The lattice parameters and
the angles of the chosen space group are selected randomly from
a range [3.1, 25.0]Å and [45°, 120°], respectively. Atomic positions
of the asymmetric unit cells are generated randomly within the
volume that is allowed by their space-group symmetry. This
specimen generation process is subject to a physical constraint:
after applying the space group symmetry to the atomic positions
on the asymmetric unit cells, the minimum distance between the
atoms in the unit cell must be within the range [0.95, 7.0] Å. If this
requirement is not met, the generation process is restarted. The
generation of amorphous specimens is based on randomly
choosing only one atomic number Z from the range [1, 103].
The atomic positions of amorphous specimens are generated by
randomly placing atoms within the extended simulation box,
subject to the requirement that the minimum distance between
atoms is within the range [0.95, 1.6]Å. This process continues until
the desired density within the range [2.0, 7.0] g/cm3 is achieved. In
contrast, the generation of individual points starts by randomly
choosing a number of points within a given range of positive
integers. The 3D positions of the particles are then generated
randomly within the extended simulation box, subject to the
requirement that the minimum distance between particles is
within the range [1, 20]dr. This option is also used to generate low-
resolution images.
The second step begins by randomly choosing between a

specimen orientation along the zone axis or a random orientation.
The probability of choosing a zone axis orientation is 0.75. If the
specimen is crystalline, the zone axis orientation is randomly
chosen from the first eight main zone axes, and a small random
mistilt angle is generated for the chosen orientation using a
normally distributed random number with a standard deviation of
5°. For non-crystalline specimens, a random 3D orientation is
generated. To prevent alignment of crystalline specimens along
the xy directions, an additional random rotation is applied along
the z-axis. For a given generated orientation, the specimen is
oriented and cropped in the xy plane so that it fits within the
extended simulated box. This is followed by a random generation
of a wedge on the specimen with a probability of 0.75. The wedge
can be generated on the top, bottom, or both surfaces of the
specimen, each with a probability of occurrence of 0.33. The
wedge orientation is generated randomly in the xy plane, and its
angle is chosen randomly from the range [5°, 45°]. Shapes can be
applied to the specimen with a probability of 0.5. To avoid any
preference for the three different types of shapes, the probability
of occurrence for each type is set to 0.33. The first type of shape is
a polygon rod, for which the number of cross-section vertices
sliced along its length is randomly chosen from the range [3, 15].
The rod is also placed and oriented randomly. The radius of the
polygon is chosen randomly from the range ½0:01; 0:5�maxð̂lxyzÞ.
The second shape is a convex polyhedron, for which the radius
and the number of vertices are chosen randomly from the ranges
½0:01; 0:5�maxð̂lxyzÞ and [4, 20], respectively. The third shape is a
hard shape, in which all atoms on one side of a randomly
generated 3d plane parallel to the z orientation are removed. The
application of a chosen shape can be used to either remove or
keep the atoms of the specimen, with a probability of keeping the
atoms of 0.5. Defects are generated randomly with a probability of
0.8. The process starts by randomly selecting a number of atoms,
nsel, within the specimen. This number is chosen randomly from
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the range [0, nmax], where nmax is equal to the number of atoms in
the specimen multiplied by 0.25 and rounded to the nearest
whole number. The positions of the selected atoms are randomly
changed with a probability of 0.5. This is done by adding a
normally distributed random number with a standard deviation
equal to the atomic radius to the position of each selected atom.
The final step of specimen generation adds a support layer with

a probability of 0.95. The support layer can be either crystalline or
amorphous, each with a probability of 0.5. The thickness of the
support layer is chosen randomly from the range [1, 30]nm. The
process described above for crystalline and amorphous specimen
generation is used for the support layer, with the exception of
shape generation. Finally, the generated atoms are added to the
specimen.

Undistorted data generation. High/medium resolution electron
microscopy data can be synthesized as a linear superposition of
the projected signal of each atom in the specimen at a given
orientation. Moreover, each projected atomic signal can be
modeled as a two-dimensional radial symmetric function, f iZðrÞ,
where the index i refers to an atom with atomic number Z in the
specimen. Under this assumption, y can be expressed as:

y ¼
X
Z

X
i

f iZðjr� rijÞ; (16)

where r is a two-dimensional vector. In addition, we model fZ(r) for
each atom with atomic number Z as a weighted sum of Gaussian,
Exponential, and Butterworth functions:

f ZðrÞ ¼ h1e
� r2

2 rm
Zð Þ2 þ h2e

� r
rm
Z þ h3

1þ ðr=rmZ Þ2n
; (17)

where h1, h2, h3, n and rm are the parameters of our model, which
are restricted to positive values. This parameterization has three
benefits. First, it accurately models almost any simulated/
experimental incoherent EM image. Second, it allows for an easy
inclusion of physical constraints. Third, it only requires five
parameters. To allow realistic tails of fZ(r), we constrain n to be a
uniform random variable between [4.0, 16.0]. We would also like to
emphasize that all numerical ranges for the data generation were
fine-tuned based on analyzing around 2000 real simulations of (S)
TEM images for different specimens and microscope settings.
In order to encode physical information into this model, rmZ is

chosen proportionally to the transformed two-dimensional mean
square radius, r̂Z , of the projected atomic potential, Vp

ZðrÞ73:
rmZ ¼ a ´ ð̂rZÞα þ b (18)

where

a ¼ StdZ f̂rZg=StdZfð̂rZÞαg; (19)

b ¼ EZ f̂rZg � a ´EZfð̂rZÞαg; (20)

r̂Z ¼
R1
0 r2Vp

ZðrÞrdrR1
0 Vp

ZðrÞrdr

" #1=2

(21)

and α is a uniform random variable between [0.75, 1.25]. On the
other hand, the linear coefficients h1, h2 and h3 are randomly
chosen within the range [0.5, 1.0] with the following constraint:Z

f Zi ðrÞdr>
Z

f Zj ðrÞdr; ifZi > Zj (22)

where Zi and Zj are the atomic numbers of two elements of the
specimen. This constraint arises from the fact that the integrated
intensity of quasi-incoherently scattered electrons of a given
atomic number is proportional to Zγ, in which γ is a real number
between 1.0 and 2.0 depending on the microscope settings74.
The process of generating low-resolution images begins by

randomly choosing a set of low-resolution image types from the
following options: soft particles, sharp particles, grains, bands,
boxes, and cracks. This stage uses the specimen type “individual
points” to generate random positions where different objects will
be placed. Finally, the low-resolution image is obtained by linearly
superimposing these individual objects.
The generation of soft particles starts by randomly choosing a

number of particles in the range [15, 85]. Each soft particle image is
generated by randomly rotating the asymmetric version of Eq. (17),
where rmZ ¼ ðrmx

Z ; r
my

Z Þ and r
my

Z ¼ αrmx
Z , with α a random variable in

the range [0.8, 1.2]. In the case of sharp particles, there is a sharp
transition between the border and background of the particle, and
the particle can be either polygonal or elliptical with equal
probabilities of occurrence. The process starts by randomly
choosing a number of particles in the range [15, 40]. For the
polygon option, the number of vertices is randomly chosen in the
range [3, 5]. Each sharp particle image is generated by masking a
3D random positive plane intensity with its randomly rotated
shape. This masking creates an intensity gradient over the x− y
plane such that the object does not appear flat.
Grain generation in 2D is performed using the Voronoi

tessellation method75, which is one of the available techniques
for producing random polygonal grains within a domain. This
process starts by randomly selecting a number of points within the
range [15, 175]. Each grain image is created by masking a 3D
random positive plane with its corresponding Voronoi cell. In
addition, the grain borderline is included with a probability of
occurrence of 0.5, where its intensity value is randomly assigned
within the range [0.5, 1.5] × mean (grainintensity).
EM images may exhibit contrast inversion related to the

projected specimen, which can be easily simulated by inverting
the image:

y  maxðyÞ � y: (23)

The probability of this mechanism occurring was set to 0.5. To
introduce nonlinear dependence between the generated image
intensity and the projected specimen’s structure, y is non-linearly
transformed with a probability of occurrence of 0.5:

y  jyjβ (24)

where β is a uniform random number selected from the range
[0.5, 1.5].
To further break this linearity, a random background was added

to y. The background is randomly chosen between a 3D plane and
a Gaussian, with an occurrence probability of 0.5 for each. In the
first case, a randomly orientated positive 3D plane is generated
with a random height between ½0;maxðyÞ=2�. In the second case,
the Gaussian center and its standard deviation are randomly
chosen within the range of the xy simulation box size and
½0:2; 0:6� ´ minðnx ; nyÞ, respectively. From the analysis of the
experimental and simulated data, we found that the ratio
rstd=mean ¼ Stdfyg=Efyg is between [0.01, 0.35]. Therefore, if the
EM image does not fulfill the latter constraint, then it is linearly
transformed as:

y  cy þ d (25)

where c and d are chosen to bring rstd/mean within the range of the
constraint. Finally, the EM image is normalized through dividing
by its maximum value.

y  y
maxðyÞ (26)

Note that the correct parameterization of the model and the
randomness of its parameters are subject to physical constraints
allowing to encode information in the generated high/medium
resolution EM image of the atomic size, atomic vibration, relative
intensities between atomic species, detector angle, acceleration
voltage, aberrations and/or detector sensitivity.
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TEM noise model
The TEM noise model is based on the fact that TEM images are
recorded using parallel illumination, and that most signal
acquisitions for electrons are set up so that the detector output
is directly proportional to the time-averaged flux of electrons
reaching the detector. In case of TEM, the electrons are detected
indirectly using a charge-coupled device (CCD) sensor76 or a
complementary metal oxide semiconductor (CMOS) sensor77, or
directly using a direct electron detector78.
For indirect detection, primary electrons are converted to

photons in a scintillator, which are then directed to the CCD/
CMOS sensor through a lens or fiber-optic coupling. In contrast,
for direct electron detectors, the CMOS sensor is directly exposed
to the electron beam.

TEM camera modulation-transfer function. Scattering of incident
electrons over the detector leads to the detection of electrons in
multiple pixels, which can be quantitatively described using the
modulation-transfer function (MTF). Because the effect of the MTF
is to produce an isotropic smear out of features on the recorded
TEM image, which in general cannot be distinguished from an
undistorted TEM image recorded with other microscope settings,
we embedded this effect into the undistorted TEM image by
convolving it with the point-spread function (PSF), which is the
Fourier transform of the MTF:

y  y � PSF: (27)

The MTF itself can be separated into a rotationally symmetric part,
MTFr, describing the spread of electrons in the detector, and a part
describing the convolution over the quadratic area of a single
pixel. This yields the following equation:

MTF ¼ MTFrsinc ðπu=2Þsinc ðπv=2Þ; (28)

where the Fourier space coordinates (u, v) are defined in units of
the Nyquist frequency79. Furthermore, we found that the general
shape of MTFr can be expressed parametrically as:

MTFr ¼ ae�
g2

2b2 þ ð1� aÞe� g2

2c2 ; (29)

where a, b and c are positive real numbers. These numbers were
randomly generated until they fulfilled the constraint that on a
numerical grid of 1000 points with a length of 10 units of the
Nyquist frequency, the MTFr is a positive and monotonically
decreasing function.

TEM detector noise. TEM detectors are subject to three main
sources of noise: shot noise, dark-current noise, and readout noise.
These noise sources can be classified into two types: temporal and
spatial noise. Temporal noise can be reduced by frame averaging,
whereas spatial noise cannot. However, some spatial noise can be
mitigated by using techniques such as frame subtraction or gain/
offset correction. Examples of temporal noise discussed in this
document include shot noise, reset noise, output amplifier noise,
and dark-current shot noise. Spatial noise sources include photo-
response nonuniformity and dark-current nonuniformity. Each of
these noise sources can lower the SNR of a sensor imaging device.

Photon shot noise. After the initial conversion of the incident
electron to its photon counterpart, the generated photons will hit
the photosensor pixel area, liberating photoelectrons proportional to
the light intensity. Due to the quantum nature of light, there is an
intrinsic uncertainty arising from random fluctuations when photons
are collected by the photosensor. This uncertainty is described by
the Shot process P with mean αx, where α is a dose scale factor.
The distribution of α is exponential, with a scale parameter of 0.5

and a range ½0:5; 750�=Efyg. The use of the exponential distribution
yields higher probabilities for the generation of images at lower
doses which is the focus of our research. The division by α in the

equation below brings x back to its original range:

x  PðαxÞ
α

(30)

Fixed-pattern noise. Fixed-pattern noise (FPN) is a pixel gain
mismatch caused by spatial variations in the thickness of the
scintillator, fiber-optic coupling, substrate material, CCD bias
pattern, and other artifacts that produce variations in the pixel-
to-pixel sensitivity and/or distortions in the optical path to the
CCD or in the CCD chip itself80. Since FPN is a property of the
sensor, it cannot be fully eliminated. However, it can be
suppressed using a flat-field correction procedure. We model
the remaining distortion as a normal distribution N with zero
mean and standard deviation σfpn.

x  x þ xNð0; σfpnÞ (31)

Dark-current noise. Dark current is the result of imperfections or
impurities in the depleted bulk Si or at the SiO2/Si interface. These
sites introduce electronic states in the forbidden gap which allows
the valence electrons to jump into the conduction band and be
collected in the sensor wells. This noise is independent of
electron/photon-induced signal, but highly dependent on device
temperature due to its thermal activation process81.

Dark-current nonuniformity. Dark-current nonuniformity (DCNU)
arises from the fact that pixels in a hardware photosensor cannot
be manufactured exactly the same and there will always be
variations in the photodetector area that are spatially uncorre-
lated, surface defects at the SiO2/Si interface, and discrete
randomly distributed charge generation centers82. This means
that different pixels produce different amounts of dark current.
This manifests itself as a fixed-pattern exposure-dependent noise
and can be modeled by superimposing two distributions. The Log-
Normal distribution (lnN) is used for the main body and the
uniform (U) distribution is used for the “hot pixels” or “outliers”83.

DCNU lnNðμ; σÞ þUða; bÞ (32)

with μ the mean value, σ the standard deviation, a= μ+ 5σ, and
b= μ+ 8σ.

Dark-current shot noise. Additional noise arises from the random
arrival of electrons generated as part of the dark signal, which is
governed by the Shot process. To simulate a single frame, it is
necessary to apply shot noise to the DCNU array.

x  x þPðDCNUÞ (33)

Readout noise. Readout noise is temporal noise and is generally
defined as the combination of the remainder circuitry noise
sources between the photoreceptor and the ADC circuitry. This
includes thermal noise, flicker noise and reset noise84.

Thermal noise. Thermal noise arises from equilibrium fluctuations
of an electric current inside an electrical conductor due to the
random thermal motion of the charge carriers. It is independent of
illumination and occurs regardless of any applied voltage. The
noise is commonly referred to as Johnson noise, Johnson-Nyquist
noise, or simply white noise. It can be modeled by the normal
distribution with zero mean and an appropriate standard
deviation σ84.

x  x þNð0; σÞ (34)

Flicker noise. Flicker noise, also known as 1/f noise or pink noise,
is often caused by imperfect contacts between different materials
at a junction, including metal-to-metal, metal-to-semiconductor,
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and semiconductor-to-semiconductor. MOSFETs are used in the
construction of CMOS image sensors, which tend to exhibit higher
levels of 1/f noise than CCD sensors82. The amount of flicker noise
in a CCD sensor depends on the pixel sampling rate. The equation
below describes the effect of flicker noise on a signal x:

x  x þFðNð0; σÞ=f Þ (35)

Here, F is the two-dimensional Fourier transform, σ is the
appropriate standard deviation, and f is the reciprocal distance.

Reset noise. Before a measurement of the charge packet of each
pixel is taken, the sense node capacitor of a specific row is reset to
a reference voltage level. This causes all pixels in that row to be
exposed to noise coming in through the reset line, transfer gate,
or read transistor. As a result, images may have horizontal lines
due to the fixed and temporal components of the noise. This type
of noise, known as reset noise (RN), follows a normal distribution
with mean zero and a standard deviation σ. It can be simulated by
adding a random intensity value, generated for each row, to the
intensity values of all pixels in that row83:

x  x þNð0; σÞ (36)

Black pixel noise. Black pixels are dots or small clusters of pixels on
the sensor that have significantly lower response than their
neighbors, resulting in black spots on the image. Some black pixels
may be created during the production process of the CCD camera,
while others may appear during its lifetime. Black pixels are time-
invariant and will always appear at the same locations on the image.
They can be modeled by generating a sensitivity mask (SBlack) with a
spatially uniform distribution of a specified number of black points.
Regions can be generated by applying a random walk process for a
given number of random steps to the black point positions. The
equation below describes the effect of black pixels on a signal x:

x  xSBlack (37)

Zinger noise. Zingers are spurious white dots or regions that can
appear randomly in CCD images85. Electron-generated X-rays,
cosmic rays, and muons can produce a burst of photons in the
scintillator, resulting in white spots or streaks in the image.
Radioactive elements (such as thorium) present in fiber-optic tapers

can also cause zingers80. They can be modeled by generating a
sensitivity mask (SZinger) with a spatially uniform distribution of a
specified number of zinger points. Similar to the black pixel noise,
regions can be generated by applying a random walk process for a
given number of steps to the zinger point positions:

x  xSZinger (38)

Upper-clip noise. Upper-clip noise, also known as saturation
noise, is a type of noise that occurs when the intensity value of a
pixel exceeds the maximum value that the CCD sensor can detect.
This causes the pixel to be clipped at the maximum value,
resulting in an overly bright image with lost details. This type of
noise can be modeled by setting a threshold value for the
maximum intensity and clipping any pixel values above that
threshold Tu: Upper-clip noise. Upper-clip noise, also known as
saturation noise, is a type of noise that occurs when the intensity
value of a pixel exceeds the maximum value that the CCD sensor
can detect. This causes the pixel to be clipped at the maximum
value, resulting in an overly bright image with lost details. This
type of noise can be modeled by setting a threshold value for the
maximum intensity and clipping any pixel values above that
threshold Tu:

x  minðx; TuÞ (39)

Quantization noise. To generate a digital image, the analog
voltage signal readout during the last stage is quantized into
discrete values using analog-to-digital conversion (ADC). This
process introduces quantization noise, which can be modeled
with respect to the ADC gain α:

x  roundðαxÞ (40)

Figure 11 shows simulated TEM images with different types of
noise. These distortions have been randomly added to the images
to mimic real TEM conditions and make it easier to identify the
different types of noise.

S(T)EM noise model
S(T)EM images are formed one pixel at a time by scanning a
convergent electron beam along scan lines across the sample with

Fig. 11 Demonstration of the various types of noise in TEM. Random distorted simulated TEM images are shown for various types of noise.
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constant stationary probing, which is known as dwell time. The
dimension of each square-shaped pixel in the physical space is
determined by the magnification. The scanning direction is called
the fast/row scan direction. For conventional scan patterns, the
scanning begins at the top left corner and after scanning one row
of n pixels, the electron probe moves to the next row’s first pixel.
The time required to move the beam to the beginning of the scan
line is commonly known as fly-back-time. Inaccuracies in beam
positions during the scanning process give rise to characteristic
scan-line/jitter distortions. Despite all technical improvements in
the design of high-performance S(T)EM3, the presence of these
distortions on the recorded images still hampers the extraction of
quantitative information from the sample under study5.

Scanning jitter distortion. Scanning jitter (SJ) is caused by beam
instabilities while scanning a raster pattern across the sample
during the image acquisition process. There are two distinguish-
able jitter effects: X-jitter causes random pixel shifts along the fast-
scan direction, while Y-jitter causes stretching or squishing of scan
lines or line interchanges along the slow-scan direction11.
Although these displacements are not completely random due
to serial acquisition, they depend on the previous scan position.
Realistic modeling of scanning jitter distortion can be achieved
using the Yule–Walker correlation scheme on time series86,87.
Furthermore, the fast and slow scanning directions can be
modeled independently due to their different time scales. Here,
we focus on displacement series in discrete pixels, in which each
term of the series depends on the previous one. Mathematically,
these displacement series can be described as:

Δk
t ¼ aktffiffiffiffiffiffiffiffiffiffi

1�ϕ2
tðp if k ¼ 1

Δk
t ¼ ϕΔk�1

t þ akt if k>1
(41)

where t= x, y and k is the pixel index along a given t direction. ϕt

is the correlation coefficient which describes the coupling
between two consecutive values of the series within the range
[0, 1]. ait is a normally distributed random number with zero mean
and standard deviation σt. The distorted image is created by using
bicubic interpolation and evaluating on the non-regular grid,
which is built by adding the positions of the regular grid and the
generated displacements.

x  SJðyÞ (42)

The described effects of individual jitter distortions for σx= σy=
0.75 and ϕx= ϕy= 0.6 along the fast and slow scan directions can
be seen in Fig. 12a, b, respectively. Figure 12c shows the
undistorted ADF-STEM random-generated image.
Based on our analysis of experimental data, we set the occurrence

probability of jitter distortion to 0.9. In addition, we assign the
occurrence probability of the X-jitter, Y-jitter and the XY-jitter to 0.25,
0.25 and 0.50, respectively. The values of σt and ϕt are randomly
chosen within the range [0.0025, 0.8]Å and [0.0, 0.7], respectively.

S(T)EM detector noise. Electrons are detected by a scintillator
coupled to a photomultiplier tube (PMT) via a mirror or reflective
tube. Impact of the incident electrons on the scintillator cause
photons to be emitted, which are directed to the PMT through a
light pipe. The PMT consists of a photocathode that emits
photoelectrons when illuminated by these photons, followed by a
series of stages amplifying the signal. The resulting current at the
anode can be measured using conventional ADC electronics8. The
statistics of the electron multiplication as a series of Shot events
with full width at half maximum (FWHM) of the pulse at the anode
per single incident electron is given by88:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p
mcηG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηþ 1

δ�1
mcη

þ δ2c
m2

c

s
(43)

This equation assumes that the secondary gain δ at each stage
inside the PMT is the same. In this equation, G represents the PMT
gain, η is the detective quantum efficiency, mc is the number of
photons collected per incident electron, and δ2c is the variance of
that number88. A good approximation for the noise spectrum of a
photomultiplier is the Shot distribution, which can be approxi-
mated by a Gaussian distribution for large means. Since for each
electron reaching the scintillator, around 100 photons reach the
cathode of the photomultiplier, a Gaussian approximation can be
used with a standard deviation

σ ¼ mcηG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηþ 1

δ�1
mcη

þ δ2c
m2

c

s
(44)

In addition, the number of electrons hitting the scintillator is
described by the Shot process (P)89. The signal can therefore be
constructed in two steps:

x  PðαxÞ (45)

x  ðx þNð0; σÞÞ=α (46)

where α is a dose scale factor. Dividing by α in the latter equation
brings x back to approximately its original range.

Fast scan noise. Fast scan noise arises due to the use of short
dwell times during data acquisition and appears as horizontal blur
in the recorded images. This effect can also be seen in the Fourier
domain as a damping effect on the high frequencies in the
horizontal direction. This blurring is caused by the finite decay
time of the detection system, which consists of a scintillator, a
photomultiplier, and additional readout electronics89,90. In addi-
tion to blurring in the horizontal direction, fast scans may
introduce other artifacts due to the limited response time of the
scan coils. In particular, strong distortions may appear on the left-
hand side of the images due to the discontinuity in the scan
pattern between consecutive lines. This can be avoided by using a
small delay (fly-back time) between scanning lines. The optimal
value of this delay is hardware specific but results in an additional
dose to the sample, which will be localized on the left-hand side of

Fig. 12 Demonstration of scanning jitter distortion. Image (a) and (b) are distorted jitter images along the fast and slow scan direction,
respectively. c Undistorted ADF-STEM image of a random sample.
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each image91. In general, the effect of fast scan distortion can be
modeled by convolution in one dimension along the fast-scan
direction between x and the point-spread function (PSF) of the
system. After careful analysis of the experimental data, we find
that the PSF of the system can be decomposed into contributions
from the detector and the readout system.

Imfsdðx; yÞ ¼ Im⊛psfdetector⊛psfreadout (47)

with

psfdetector ¼
α

4π2x2þα2 : x< ¼ 0

0 : x>0

	
(48)

psfreadout ¼
ae�x=β sinð2πx=γ þ θÞ : x< ¼ 0

0 : x > 0

(
(49)

where

a ¼ βγ γ sinðθÞ þ 4πβcosðθÞð Þ
γ2 þ 16π2β2

(50)

is the normalization factor, which ensures that the total integral of
the psfreadout is equal to 1, k is the pixel value in real space, and α is
the parameter of the Lorentzian function that describes the PSF of
the detector. The parameters β, γ, and θ are the parameters of the
damped harmonic oscillator, which is used to describe the PSF of
the readout system. The model parameters were obtained by
fitting to experimental images and by applying random variation
to the fitting parameters.

Row-line noise. Row-line (RL) noise arises due to the non-
response of the detector over some pixels during the scanning
process along the fast-scan direction. This noise can be modeled
by generating a random number of row lines with random length.
The pixel intensities of the lines in the image are replaced by their
average intensity multiplied by a random factor within the range
[0.5, 1.5]. This can be represented as:

x  RLðxÞ (51)

Black pixel noise. Black pixels are randomly occurring pixels that
have significantly lower values than their neighboring pixels,

causing black spots to appear in the image. These black pixels may
result from information loss during data transmission, cosmic rays,
or the detector’s non-response. As black pixels are time-
dependent, they can be modeled by generating a sensitivity
mask (SBlacknoise) with a spatially uniform distribution of a specified
number of black points. This can be represented mathematically
as:

x  xSBlacknoise (52)

However, in the case of SEM images, black spots in the images
may be attributed to pores present in the sample, and hence, this
type of distortion is not generated.

Zinger noise. Zingers are random white dots that appear in an
image. They are caused by bursts of photons produced by
electron-generated X-rays, cosmic rays, and muons in the
scintillator80. Zinger noise can be simulated by creating a
sensitivity mask (SZingernoise) with a spatially uniform distribution
of a specified number of Zinger points.

x  xSZingernoise (53)

Upper-clip noise. Upper-clip noise, also known as saturation
noise, occurs when the intensity value of a pixel exceeds the
maximum value that the analog-to-digital converter can detect.
This causes the pixel to be clipped at the maximum value,
resulting in an overly bright image with lost details. This type of
noise can be modeled by setting a threshold value for the
maximum intensity and clipping any pixel values above that
threshold Tu.

x  minðx; TuÞ (54)

Quantization noise. To generate an image in digital form, the
analog voltage signal readout during the last stage is quantized
into discrete values using an ADC with a gain α. This process
introduces quantization noise.

x  roundðαxÞ (55)

Figure 13 shows simulated STEM images of the different types of
noise that can be found in STEM images. These distortions were

Fig. 13 Demonstration of the various types of noise in STEM. Random distorted simulated STEM images are shown for various types of noise.
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randomly added to the images to simulate real STEM conditions
and make it easier to identify the different types of noise.

Post-processing distortions. Post-processing distortions are typi-
cally added after the image is recorded. These distortions, such as
interpolation and blurring, can affect the noise in the image in a
nonlinear way. Post-processing distortions can also include
annotations and cropping, which replace part of the original
image. Ideally, these distortions should be preserved by the
restoration process. Interpolation distortions may happen when a
user applies a transformation function to the image before it is
restored. This might be done to make the image suitable for
further post-processing or to better visualize an area of interest.
Interpolation distortion can be modeled by applying a random
transformation, such as a random linear transformation matrix, to
the training image pair. Gaussian blurring is a way of distorting an
image to reduce noise and improve the SNR. This is done by
applying a 2D Gaussian function to the image with a given
standard deviation σ. Although this type of blurring can improve
the quality of an image, it can also alter the distribution of noise in
the image. Therefore, when restoring an image, the blurring must
be removed along with the distortion. In our training set, we only
applied random σ values between 0 and 1 pixel to the distorted
images. Annotations are added to an image to provide additional
information or to highlight specific areas of the image. These can
include text, shapes, and arrows, and may be added by the
software or by the user. When creating training image pairs, we
model the annotations by adding the same random annotations
at the same pixel location in both the ground-truth and distorted
images. Cropping is a type of post-processing distortion that
involves removing one or more areas of an image. This can be
done manually by the user or automatically in a processing
workflow, such as after the image has been shifted, rotated or
aligned. The removed areas are usually filled in with a constant
value or the median of the image’s value range. When creating
training image pairs, we model this process by randomly replacing
the intensity value in a randomly selected area in both images.
The selected area is typically outside a central square or rectangle,
such as 50% of the total image area, to mimic the fact that
cropping is typically not applied to the central region, which may
already be adjusted to show the main feature of interest.

DATA AVAILABILITY
The trained models for the six distinct neural networks described in this study are
openly accessible. These models, together with illustrative scripts demonstrating
their utilization, are provided to facilitate replication and further exploration. In
addition, the script used for training these models is also included. All these resources
are hosted in a dedicated GitHub repository, ensuring easy accessibility and version
control. The repository can be accessed at the following URL: https://github.com/
Ivanlh20/tk_r_em.
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