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Experimental reconstructions of 3D atomic structures from
electron microscopy images using a Bayesian genetic algorithm
Annick De Backer 1,2, Sandra Van Aert1,2✉, Christel Faes3, Ece Arslan Irmak1,2, Peter D. Nellist4 and Lewys Jones 5,6✉

We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single
projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning
transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the
energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-
mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during
dynamical processes from images acquired with sufficiently low incident electron doses.
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INTRODUCTION
It is commonly accepted that the three-dimensional (3D) atomic
structure of metallic nanoparticles determines their catalytic
properties1–5. Indeed, the presence of highly undercoordinated
atoms or stepped facets at the surface governs many catalytic
reactions. A quantitative characterization of the atomic configura-
tion at the surface is therefore essential to reveal the active sites of
the nanoparticle where reactant molecules are preferentially
adsorbed, to understand the mechanisms of the catalytic
behavior, and to improve the performance of these systems.
Atomic-resolution annular dark field scanning transmission
electron microscopy (ADF STEM) has become an invaluable tool
for imaging metallic nanostructures6–10. In this context, electron
tomography has been used to provide insights into the 3D shape
of nanostructures11–13, but this technique requires a significant
electron dose for the multiple projections. Consequently, this
approach is not feasible when investigating small beam-sensitive
catalysts or dynamical processes. Therefore, alternative methods
have been developed where the 3D atomic structure is
reconstructed from a single ADF STEM projection8,14–17. For this
purpose, the number of atoms contained in an atomic column
along the third dimension is retrieved from an ADF STEM image.
These atom counts are combined with prior knowledge about a
material’s crystal structure and used to create an initial atomic
model. This serves as an input for energy minimization to obtain a
relaxed 3D reconstruction of a nanostructure. The validity of this
atom-counting/energy minimization method has qualitatively
been verified using electron tomography10,16 and is applied to
study several systems5,8,10,16,18.
Nowadays, different possible approaches are available for

energy minimization that incorporates experimental observations.
Indeed, the aim is not to find the global energy minimum from a
purely computational study but to reconstruct also the metastable
configurations in which the nanoparticles often reside. Yu et al.
refined the atomic structure by minimizing the particle energy
together with matching forward linear modeling and the
experimental ADF STEM images15. In this study, an approximate
model for the STEM image simulation was required limiting the

accuracy of the reconstructed models. Other methodologies use
atom-counting results as an input, and mainly, two different
strategies can be distinguished here. Using the first approach, the
energy is minimized by shifting the atomic columns up and down
while keeping the number of atoms in a column fixed to the
outcome of the atom-counting procedure8,18. The second
approach consists of a full molecular dynamics simulation to
relax the particle’s structure5,10,16. The first method is potentially
too restrictive by ignoring the finite atom-counting precision,
especially at lower doses. The expected inevitable counting
imprecision in this case9, will likely result in slightly more
roughness at the reconstructed atomic surface in the direction
parallel to the beam direction8,16. On the other hand, the second
method runs the risk of ending up in a global energy minimum
and violating the physical constraints of the experimental
observation. Both approaches hamper a reliable 3D reconstruction
of the atomic configuration at the surface, especially for images
acquired at lower doses.
Here, we propose a Bayesian genetic algorithm that includes

the finite atom-counting precision via a Bayesian inference
scheme to improve the 3D atomic models for small nanos-
tructures. Bayesian methods are powerful tools in which a priori
information is rationally combined with the observed data and
have been successful in other fields of science including
business, computer science, economics, educational research,
environmental science, epidemiology, genetics, geography,
imaging, law, medicine, political science, psychometrics, public
policy, sociology, and sports19–22. Next to the finite atom-
counting precision, the incorporation of additional prior knowl-
edge from neighbor-mass relations will be beneficial when
reconstructing atomic models from extremely low-dose ADF
STEM images. This prior knowledge is fused into the genetic
algorithm which uses atom-counting results as an input for
reconstructing the 3D atomic structure. Genetic algorithms are
typically used as efficient tools for solving large optimization
problems where finding a direct solution is not possible. These
evolutionary methods are widely applied for structure prediction
of systems with increasing complexity, such as atomic clusters,
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crystals, interfaces, surfaces, thin films, nanoparticles, and defect
structures15,21,23–29.
In this study, we focus on the 3D characterization of small,

single-crystal, mono-metallic catalyst nanoparticles. The techno-
logically relevant size of the catalytic particles considered here, for
which the catalytic activity is peaking30, is around 3 nm in size, but
the method will be applicable to structures up to 10 nm in
diameter. The method will also be suitable for the different types
of single-element crystalline nanostructures for which the model-
based atom-counting method is designed31,32. This covers atomic-
resolution ADF STEM images of nanostructures with a varying
thickness, acquired along a main zone axis, which are defect-free
along the beam direction. For more complex shapes, e.g., concave
surfaces, it will depend on the direction of the surface with respect
to the incident electron beam whether the specific feature can be
reconstructed reliably from the atom-counting results of a single
projection. In this work, the quality of the obtained reconstruc-
tions with our advanced Bayesian genetic algorithm is quantita-
tively evaluated via an extensive simulation study, in terms of the
reliability with which the surface atoms can be reconstructed in
3D. In the last part, the algorithm is applied to retrieve 3D atomic
models from an experimental time series of a Pt nanoparticle.

RESULTS AND DISCUSSION
Pt nanoparticle model and atom-counting
To count the number of atoms, a very well-established approach is
utilized8,11,16,31,32. In the past years, the high accuracy and
precision of this method have been demonstrated for nanocrystals
of arbitrary shape, size, and atom type. For atom-counting, so-
called scattering cross-sections (SCSs), corresponding to the total
intensity of electrons scattered toward the ADF detector for every
atomic column, have been introduced in ADF STEM. These SCSs
can be measured using statistical parameter estimation theory33,34

or by integrating intensities over the probe positions in the vicinity
of a single column of atoms35. For our simulation study, SCSs are

determined from noise realizations at different doses of a
simulated ADF STEM image of a Pt nanoparticle partially
embedded in a carbon support, illustrated in Fig. 1a, b. The
created particle largely resembles the Wulff construction solid for
Pt586 (four atoms along each edge) and was modified to include
several diagnostic features of interest commonly observed for
catalytic metallic nanoparticles including a surface adatom, a
surface vacancy, a terrace edge, a small area of {110} face, and
rounded corners. With these modifications, the particle model
contains 587 atoms. The slab of amorphous carbon measures
5 nm × 5 nm × 2 nm and the geometry follows the work of
reference36. Image simulations were performed for the Pt particle
viewed along the [110] zone axis. The details of the simulations
are described in the Methods section. Figure 1c shows the annular
bright field (ABF) STEM image, illustrating the presence of the
carbon support and Fig. 1d shows the ADF STEM image using an
electron dose of 104 e−Å−2. In Fig. 2a, b simulated ADF STEM
images are shown using lower incident electron doses corre-
sponding to 103 and 102 e−Å−2, respectively. The simulated ADF
STEM images can be modeled as a superposition of Gaussian
functions using the StatSTEM software16. The refined models for
the simulated ADF STEM images are shown in Fig. 2c, d. From the
estimated model parameters, the SCSs are determined for each
atomic column and are represented in a histogram in Fig. 2g, h. In
a subsequent analysis, the distribution of the SCSs of all atomic
columns is decomposed into overlapping normal distributions, i.e.,
a Gaussian mixture model, as illustrated in Fig. 2g, h31,32. The
locations of the normal distributions are matched to the expected
SCS values from simulations for a column containing g atoms37

and their widths are determined. It should be noted that this
procedure only depends on the values of the estimated SCSs and
is independent of the subjective choice of bins in the histogram
for visualization. The number of atoms in each projected atomic
column in Fig. 2e, f is then obtained by assigning the SCS to the
component that generates this SCS value with the highest
probability. More details on the atom-counting methodology are

c d

a b

Fig. 1 Simulated Pt nanoparticle partially embedded in an amorphous carbon support. a 3D model and b cross-section, c simulated ABF
STEM image, and d simulated ADF STEM image at 104 e−Å−2. The scale bars in c–d are 1 nm.
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provided in the Methods section. The width of the normal
distributions reflects the finite precision of the atom-counting
results and will be used as prior knowledge for reconstructing the
3D atomic structure.

Bayesian inference: finite atom-counting precision and
neighbor-mass relations
As an input we need the probability that an atomic column
contains a specific number of atoms which can be defined from the
decomposition into normal distributions, illustrated in Fig. 2g, h.
Indeed, the normal distribution functions describe the probability
that component g generates the nth SCS, i.e., p(SCSn∣g), and by
using Bayes’ theorem, the probability that the nth SCS has g atoms,
i.e., p(g∣SCSn), can be computed:

pðgjSCSnÞ ¼ pðgÞpðSCSnjgÞ
pðSCSnÞ ¼ pðgÞpðSCSnjgÞP

gpðgÞpðSCSnjgÞ
: (1)

Equal probabilities are assigned to the probability of having g
atoms in a column p(g). The value of p(g) depends on the
maximum number of g that is considered. However, for the
computation of the probability p(g∣SCSn), it is irrelevant since a
constant p(g) cancels in Eq. (1). The probability p(g∣SCSn) is
visualized by a probability matrix in Fig. 2i, j. From the
representation of the Gaussian mixture model on top of the
histogram, the relation between the probability matrix and the
width of the normal distributions is clear.
For improving the quality of the reconstructions further at lower

doses, we can include even more relevant prior knowledge in the
form of neighbor-mass relations. A neighbor-mass matrix helps to
predict the column mass based on the average mass of the
neighboring columns. For the small spherical convex nanoparti-
cles in this study, abrupt discontinuities are highly non-physical30.
Therefore, we propose here a diagonal neighbor-mass matrix. The
matrix is visualized in Supplementary Fig. S2. The probability
profile is Gaussian and the width is chosen such that the interval
±1 atom contains 80% of the probability. One should keep in mind
that for particles with significantly different surfaces, the neighbor-
mass matrix should be designed differently. The normalized
neighbor-mass probability, p(g∣NBn) with NBn indicating the
average neighbor-mass, is combined with the probability matrix

accounting for the atom-counting reliability p(g∣SCSn), in order to
take the two types of prior knowledge into account:

p gjSCSn \ NBnð Þ ¼ pðgjSCSnÞpðgjNBnÞP
gpðgjSCSnÞpðgjNBnÞ

: (2)

Bayesian genetic algorithm for 3D atomic modeling
The introduced probability matrices are used as input of the prior
knowledge for the genetic algorithm that we will use to
reconstruct the 3D atomic structure of the nanoparticle, hence
the name Bayesian genetic algorithm. A genetic algorithm is an
iterative process where first a population of randomly generated
individuals is created. In our algorithm, this initial population is
generated by randomly modifying the number of atoms and the
height offset of the atomic columns of a 3D starting configuration
within a certain mutation range. This 3D starting configuration is
obtained by positioning the atoms (i.e., the outcome of the atom-
counting procedure) in each atomic column parallel to the beam
direction and symmetrically around a central plane. Based on prior
knowledge about the crystal structure, the atoms are separated at
a fixed distance a=

ffiffiffi
2

p
with a= 3.92 Å corresponding to the [110]

zone orientation. For this orientation, the atomic columns at the
even planes are shifted along the beam direction by a=ð2 ffiffiffi

2
p Þ with

respect to the odd planes. A population size of 500 is used in all
calculations, the count mutation range equals 1, and the height
mutation range for the offset of a column equals a lattice step, i.e.,
the interatomic spacing between the Pt atoms along the [110]
direction. In each iteration, i.e., a generation, the fitness of every
individual in the population is evaluated by the cost-function of
the optimization problem. The individuals with the best cost-
function values are selected from the current population, and a
new complete population of candidate solutions is formed by
recombining and mutating the selected individuals. The fraction
of the population that is used for the recombination step equals
50%. For each recombined member, two parents are randomly
chosen from the selected individuals, and cross-over is performed
by randomly selecting columns from both parents. A mutation
density of 2% is included to avoid ending up immediately in a
local minimum by randomly modifying the number of atoms and

Fig. 2 Statistical atom-counting analysis and construction of the probability matrix. a, b Simulated ADF STEM images of the Pt
nanoparticle embedded in the carbon support along the [110] zone axis for an incident electron dose of 103 and 102 e−Å−2. c, d Refined
parametric models of the images shown in a, b. e, f Estimated number of atoms in each atomic column for the images shown in a, b.
g, h Histograms of SCSs for the images shown in a, b. The decomposition into overlapping Gaussian components is shown in color,
corresponding to the number of atoms. The black curve shows the estimated mixture model. i, j Probability matrices indicating the probability
for a column n to contain a specific number of atoms g. The scale bars in a and b are 5Å.
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height offset for 2% of the atomic columns in each new member.
In addition to the usual iterations over many breeding genera-
tions, in this work we introduce a second loop to provide for
multiple unique starting initializations, specifically to reduce the
risk of finding only local-minima solutions. It should be noted that
in the population of candidate solutions the atoms are not relaxed
in x-, y-, and z-direction in order to search a broad population with
fast convergence. A geometry relaxation, performed using
LAMMPS38, would not affect the ranking of the models and thus
not influence the reliability of the reconstructed models as
illustrated in Supplementary Table S2. The geometry relaxation
only reduces the cost-function by a consistent amount as shown
in Supplementary Fig. S3. More details of the genetic algorithm
are provided in the Methods section. The cost-function χ that we
use to evaluate the candidate solutions within the different
generations of the genetic algorithm is given by:

χ ¼
P

EaP
ngn

� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
n

pðgnjprior knowledgeÞn

r !
; (3)

where ∑Ea is the sum of the energies per atom given by the EAM
potential39,40 and ∑ngn is the total particle mass. This cost-function
consists of two factors where the first represents the average
energy per atom that we wish to minimize. The second factor
allows us to penalize the energy per atom with the probability of
the candidate solution based on the prior knowledge (Eq. (1) or
Eq. (2)). This form of the cost-function weights the penalty term
with the average energy per atom. The model probability itself is
based on the geometric mean of the probabilities of each
individual column and needs to be maximized. Since the average
energy per atom is negative, this cost-function is minimized.

Simulation results
In order to evaluate the quality of the reconstructions using the
Bayesian genetic algorithm, an extensive simulation study is
carried out. For this purpose, the electron dose is varied between
102 and 105 e−Å−2 and 30 noise realizations are generated at each
electron dose. Supplementary Fig. S4 summarizes the atom-
counting results obtained following the methodology illustrated in
Fig. 2 and which are used as an input for our Bayesian genetic
algorithm. The results of the reconstructions are quantitatively
summarized by comparing the reconstructed 3D models with the

ground truth model. As a criterion to evaluate the 3D atomic
models, we used the fraction of surface atom positions, i.e., with
coordination number less than 12, that are correctly defined in 3D.
These are the atoms that are of interest for catalysis. Figure 3
shows this fraction for the reconstructed atomic models. As a
reference, we also included the fraction following the approach
where the number of atoms is fixed to the outcome of the atom-
counting procedure and where during the reconstruction the
atomic columns are only shifted up and down. A significant,
targeted improvement for the reconstructed surface atoms is
observed for the lower incident electron doses when including the
finite atom-counting precision and the neighbor-mass relations.
For the lowest incident electron dose of 102 e−Å−2, we see an
improvement from 57% to 73%. It is important to notice that only
Poisson noise is included in the simulation study. In experiments,
environmental distortions will introduce additional uncertainties
in the atom-counting results41. Therefore, we expect that the
Bayesian genetic algorithm will also improve the reliability of the
reconstructed 3D models at higher incident electron doses for
experiments. If the probability matrix of the finite atom-counting
precision (Fig. 2i, j) shows very high probabilities for all the atomic
columns, i.e., when there is no ambiguity in the assignment of the
number of atoms, the less computational demanding method,
where the number of atoms in the atomic columns is fixed during
the reconstruction, might be preferred as it will result in a reliable
3D atomic model in a more fast manner. In Supplementary Fig.
S5a, the results obtained when using the neighbor-mass relations
only are also included, next to the results of Fig. 3. The quality of
the neighbors-only reconstructions is dose-independent and
significantly lower at the higher incident dose values. In this case,
there are no constraints set by the experimental observations and
the reconstruction is more determined by a lower energy solution.
The high performance at low doses for the neighbors-only
reconstructions is partially owing to the choice of a relatively
well-faceted, low-energy particle. These results illustrate that prior
knowledge about the finite atom-counting precision is essential in
the Bayesian genetic algorithm and that it is the combination of
both types of prior knowledge, that leads to improved perfor-
mance as illustrated in Fig. 3. Furthermore, the results in this figure
demonstrate that the different contributions in the cost-function,
i.e., the average energy per atom, the finite atom-counting
precision, and the neighbor-mass relations, are properly balanced
and that the reconstructed 3D model is not fully determined by
one of the contributions.
In order to evaluate the reconstructed 3D atomic models in a bit

more detail, the 4th worst and 4th best reconstructions of the 30
noise realizations at each dose can be visualized as an 80%
prediction interval for the reconstructions. The 4th worst and 4th
best reconstructions are selected based on the percentage of
correctly reconstructed surface atoms. These intervals are shown
in Fig. 4 and Supplementary Fig. S5b. The colors of the atoms
correspond to the coordination number and the reconstruction in
the box in Fig. 4c corresponds to the ground truth model. The
coordination number serves as a powerful predictor for surface
adsorption strength on Pt nanoparticles, and hence as a predictor
of chemical activity3,42–44. Even for the lower doses in Fig. 4c, the
shape is very well reconstructed and a vast improvement is
observed when including relevant prior knowledge resulting in
less roughness from the finite atom-counting precision at the
surface as compared to the low-dose reconstructions in Fig. 4a,
where the number of atoms in an atomic column has been kept
fixed. Some features will be more easily reconstructed unambigu-
ously than others. Surface facets are typically well reconstructed.
As expected, smaller details are more challenging. For example, an
adatom will be easier to detect if it is located at the side of the
nanoparticle in projection. However, in this case, it is more difficult
to locate this atom correctly along the depth direction. On the
other hand, an adatom on top of the nanoparticle, will be more
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Fig. 3 Quantification evaluation of the reconstructed 3D models.
Fraction of the surface atoms that are correctly reconstructed in 3D
when including the finite atom-counting precision and neighbor-
mass relations as prior knowledge. As a reference, the results when
using a fixed number of atoms in a column are also displayed. The
error bars indicate 95% confidence intervals.
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difficult to detect if the atom-counting precision is limited, but
once detected, it can more easily be located along the depth
direction. In general, if the direction of the incident electron beam
is not immediately visible based on the reconstructed 3D atomic
models, a trustworthy reconstruction is obtained.

Experimental results
As a last part of this work, we apply the Bayesian genetic
algorithm to 25 frames of an experimental time series of a catalyst
Pt nanoparticle30. The experimental details and corrections for
scan noise and tilt are described in the Methods section.

a Fixed number of atoms in
      the atomic column

b Finite atom-counting precision c Finite atom-counting precision 
     + neighbor-mass relations
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Fig. 4 Visualization of the reconstructed 3D atomic models. A lower bound (red background) and upper bound (green background) of an
80% prediction interval are represented for the reconstructions when using a a fixed number of atoms in the atomic column during
the reconstruction, b the finite atom-counting precision, and c the finite atom-counting precision and the neighbor-mass relations. The
reconstruction in the box in the lower right corner corresponds to the ground truth model. The coloring of the atoms corresponds to the
nearest-neighbor coordination, from 1 in red to 12 in dark blue.

a

b

c

Fig. 5 Analysis of an experimental time series of a catalyst Pt nanoparticle. a ADF STEM time series. b Corresponding reconstructed 3D
atomic models for the time sequence viewed along the beam direction. c Rotated models to show the dominant surface facets. The coloring
of the atoms corresponds to the nearest-neighbor coordination, from 1 in red to 12 in dark blue. The scale bars in a are 10Å.
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The incident electron dose is 1.38 ⋅ 104 e−Å−2 per frame, i.e.,
higher than the doses where we observe an improved reconstruc-
tion from Fig. 3. However, as already mentioned, during
experiments, environmental distortions introduce additional
uncertainties and this can be observed from the estimated width
of the overlapping normal distributions of the Gaussian mixture
model. This estimated width σGMM reaches values up to 0.0228,
and can be compared to the values shown in Supplementary Fig.
S1. This experimental value corresponds to the width for a dose
lower than 103 e−Å−2, when considering Poisson noise only.
Furthermore, the probability matrices for the finite atom-counting
results from the experiment and the simulation study can be
compared. Supplementary Fig. S6 illustrates that the experimental
probability matrix corresponds more to the probability
matrix of 5 × 102 e−Å−2 for which the Bayesian genetic algorithm
clearly benefits.
To reliably count the number of atoms from the time series of

images, we used a hidden Markov model which explicitly
describes the possibility of structural changes over time45,46. The
atom-counting results from every single frame have been used as
an input for our Bayesian genetic algorithm in which we utilize
the finite atom-counting precision and neighbor-mass relations.
The reconstructed models are schematically represented in Fig. 5.
The ADF STEM images and corresponding reconstructed models
for all frames are shown in Supplementary Figs. S7 and S8. This
approach enables a reliable 3D quantification of the structural
changes of the Pt nanoparticle under the electron beam. From the
evaluation of the coordination numbers (Supplementary Fig. S9),
we can conclude that although each image has unique noise and
that the structure is moving under the electron beam, the number
of atoms with the same coordination number is consistent
throughout time. Since these coordination numbers are very
important to relate to the catalytic properties, it is important to
point out here that the small changes clearly do not change the
overall catalysis-relevant information that we can extract.
To summarize, we introduced a powerful alternative to the

initially developed atom-counting/energy minimization method
for the 3D reconstruction of nanoparticles from a single viewing
projection. This Bayesian genetic algorithm takes advantage of the
finite atom-counting precision and neighbor-mass relations during
the reconstruction. This results in more reliable reconstructions of
the 3D atomic structure, especially at lower incident electron
doses below 104 e−Å−2. The increased quality of the 3D atomic
models has been validated by a quantitative evaluation of the
reconstructed surface atoms. This result shows great promise to
use these reconstructions to predict the adsorption properties of
catalytic nanoparticles.

METHODS
STEM simulations
Image simulations were performed using the MULTEM pack-
age47,48. An acceleration voltage of 200 kV, a semi-convergence
angle of 22.48 mrad, and a pixel size of 0.124Å were chosen, and
averaging over 30 unique phonon configurations was performed.
A source size having a Gaussian profile with an FWHM of 1.0Å was
added to further reflect experiments recorded under the same
conditions. The full set of simulation settings is listed in
Supplementary Table S1.

Atom-counting methodology
Using the StatSTEM software34, a parametric imaging model is
fitted to the simulated ADF STEM images. This model consists of a
superposition of N Gaussian functions and describes the intensity

at the pixel (k, l) at the position (xk, yl) of the ADF STEM image:

f klðθÞ ¼ ζ þ
XN
n¼1

ηn exp �
xk � βxn
� �2 þ yl � βyn

� �2
2ρ2

0
B@

1
CA (4)

with ζ a constant background accounting for the amorphous
carbon support, ρ the width of the Gaussian peak, ηn the column
intensity of the nth Gaussian peak, and βxn and βyn the x- and
y-coordinate of the nth atomic column, respectively. The
unknown parameters of the imaging model are given by the
parameter vector:

θ ¼ βx1 ; ¼ ; βxN ; βy1 ; ¼ ; βyN ; ρ; η1; ¼ ; ηN; ζ
� �

(5)

and are estimated in the least square sense. From the obtained
estimated parameters θ̂, the estimated SCSs can be calculated
from the volumes under the Gaussian peaks above the back-
ground33,34:

SCSn ¼ 2πη̂nρ̂
2
n: (6)

The estimated SCSs are visualized in a histogram in Fig. 2g, h and
are regarded as independent statistical draws from a so-called
Gaussian mixture model. In a sense, the assumption of indepen-
dent statistical draws implies that cross-talk between neighboring
atomic columns is not significantly contributing49–52. The model is
defined as a superposition of Gaussian components and describes
the probability that a specific SCS value is observed. The
probability density function of a mixture model with G compo-
nents can parametrically be written as:

fmix SCSn;ΨGð Þ ¼
XG
g¼1

πg
1ffiffiffiffiffiffi

2π
p

σGMM
exp

� SCSn � μg
� �2
2σ2GMM

 !
: (7)

The locations μg of the normal distributions are matched to the
expected SCS values for a column containing g atoms obtained
from image simulations performed for a Pt crystal in [110]
orientation up to 30 atoms thickness. The settings for the frozen
lattice multislice simulation are the same as for the simulation of
the Pt nanoparticle embedded in the carbon support (listed in
Supplementary Table S1). The symbol ΨG in Eq. (7) represents the
vector containing all unknown parameters in the mixture model
with G components:

ΨG ¼ π1; ¼ ; πG�1; σGMMð Þ: (8)

The parameters πg and σGMM denote the mixing proportion of the
gth component and the width of the components respectively.
The mixing proportions πg sum up to unity, therefore the Gth
mixing proportion is omitted in the parameter vector ΨG. The
parameters ΨG are estimated from the measured SCSs using the
maximum likelihood estimator for a given number of components
G. Here, G equals the maximum thickness of the image simulations
of the Pt crystal, i.e., 30 atoms, since mixing proportions of
components that exceed the maximum thickness of the Pt
nanoparticle are estimated zero.
In principle, the width σGMM reflects the finite atom-counting

precision. However, it is known that the width of the Gaussian
distributions might be underestimated for lower electron
doses37. In order to counterbalance this underestimation, an
effective width σeff will be used to describe the width of the
normal components in the Gaussian mixture model. For this
purpose, σGMM is evaluated with respect to the expected dose-
dependent width σdose as explained in more detail in the
Supplementary methods.

Genetic algorithm
The parameters of the genetic algorithm are specified for the
reconstruction of small nanoparticles and balanced with the
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available RAM/CPU resources (desktop computer) (Table 1). A
larger population size will capture a more diverse spread of
solutions and result in a longer computation time. For small
particles, a smaller population size can be used. Here, a population
size of 500 particle configurations is used which is significantly
larger than the number of atomic columns in the particle (≈100
atomic columns). A fraction of this population, i.e., the recombina-
tion fraction or cross-breeding fraction will survive from one
generation to the next and will be used as “parents” for
recombining or cross-breeding new solutions. A too small fraction
would reduce the diversity in the solution. A too large fraction, on
the other hand, reduces the amount of new children in each
generation. Therefore, a 50% fraction is chosen which means that
every solution with a quality above average will be preserved and
selected for breeding the next generation. If only existing parents
are used in the recombination step, there is a risk of ending up in
a local minimum. For this reason, after each breeding operation, a
small percentage of mutants for 2% of the atomic columns can be
introduced to inject some randomness into the atomic models. If
these traits are an improvement, they will persist, otherwise they
will automatically disappear. A very large degree of mutation is
undesirable. In such a case, the benefit from the history of the
evolution might be lost. The degree of mutation is expressed in
terms of the height mutation range and count mutation range. If
these values are too large, very non-physical solutions are
proposed. Here we consider a mutation range of ±1 atom in
mass for a given atomic column and ±1 position height shift or
lattice step. This choice is also justified by both the finite atom-
counting precision and the expected finite surface roughness.
Important to notice here is that if a mutation is beneficial, then a
cumulative evolution is possible. In this manner, a solution of ±2
or more atoms and/or ±2 or more height changes can be obtained
over different generations. Next to the iterations throughout the
different generations, a second loop feeds multiple unique
starting initializations to the algorithm to reduce the risk of
ending with local-minima solutions. For the simulation study, for
each reconstruction, 25 unique random starting populations are
used in the algorithm. It should be noted that a structure with a
better cost-function might be found when increasing this number.
For the experimental time series, we used 100 unique populations
initializations throughout the reconstruction procedure.

Experimental Pt series
The ADF STEM images were recorded on a JEOL ARM200CF fitted
with a probe-aberration corrector using an acceleration voltage of
200 kV, a probe convergence angle of 22.48mrad, an annular
detector ranging from 52 to 248mrad, a dwell time of 4 μs and an
incident electron dose of 1.38 ⋅ 104 e−Å−2 per frame. The images of
the time series were corrected for drift and other distortions using
non-rigid registration53. During the time series, the Pt nanoparticle
tilts slightly away from zone axis orientation and back, which affects
the SCSs54. Therefore, the SCSs of the individual frames need to be
compensated for tilt as an input for the hidden Markov model45. This
is done by applying a linear scaling (up to 10%) to the SCSs of the
individual frames37,55, assuming that the total number of atoms in
the nanoparticle remains constant throughout the time series.

This assumption is valid since the threshold energy for sputtering Pt
atoms from a convex surface with step sites is 379 keV56, well
above the incident electron energy of 200 keV. We therefore do not
expect sputtering of atoms from the surface, only surface diffusion41.
This is also further confirmed directly from the experimental time
series since no single Pt atoms are observed on the carbon around
the Pt particle.
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