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Abstract 
In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy 
(4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron 
diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the 
phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the 
full-phase object. Each patch is recovered from a kernel of 3 × 3 adjacent CBEDs only, which eliminates common, large memory requirements and 
enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We 
demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast 
formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be 
imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast 
characteristics makes the approach unique among live imaging methods in 4D-STEM.
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Introduction
Scanning transmission electron microscopy (STEM) is among 
the most widely used techniques for the visualization, charac
terization, and quantification of atomic structures in material- 
and nanoscience. Images are acquired by scanning a sample 
with an electron probe over a two dimensional (2D) grid. 
Traditionally, STEM data are collected using annular detectors 
which measure an integrated intensity over the detector area. 
This results directly in 2D images where the pixel intensities 
are proportional to the angular integrated scattered intensity 
of the electron beam at the corresponding probe position. 
These images are intuitively interpretable and can further be 
used for the quantification of atomic structures (Van Aert 
et al., 2013). However, conventional STEM imaging has its lim
itations, particularly in terms of dose efficiency, resolution, and 
the ability to image light and heavy elements simultaneously. 
Indeed, in the case of annular dark field (ADF) imaging, the 
scattering cross section of an atom scales with the atomic num
ber Z roughly Z1.7 (Krivanek et al., 2010; Yamashita et al., 
2018), which often leads to heavy atoms obscuring nearby light 
elements. On the other hand, imaging very thin or radiation- 
sensitive samples may even be impossible due to the high dose 
requirements of ADF. This is highly relevant especially for in
vestigations of 2D nanostructures and organic compounds.

To overcome these limitations much effort has been devoted 
towards the development of fast pixelated electron detectors 
which can record an entire convergent beam electron diffraction 
pattern (CBED) in a reasonable amount of time (Ballabriga 
et al., 2011; Tate et al., 2016; Ciston et al., 2019; MacLaren 
et al., 2020; Haas et al., 2021; Jannis et al., 2021a). This enables 

a set of new imaging modalities, such as ptychography, the cal
culation of phase contrast (Lazić et al., 2016), and true center of 
mass (COM) imaging (Müller et al., 2014). These imaging 
modalities can all be considered phase retrieval algorithms 
in a wider sense (Close et al., 2015), as they all aim to retrieve 
the projected electrostatic potential of a sample, which 
directly affects the phase of the transmitted electron wave. 
Ptychographic methods have been of particular interest for their 
super-resolution capabilities and the possibility to determine/ 
correct for microscope aberrations as well (Rodenburg & 
Bates, 1992; Jiang et al., 2018; Rodenburg et al., 1993). 
However, the computational cost and memory requirements 
for these algorithms are considerable. Iterative algorithms like 
ePIE (Maiden & Rodenburg, 2009; Chen et al., 2020) use opti
mization algorithms to fit an object to a given dataset such that 
the estimated phase corresponds to the intensity observations 
across the entire dataset. This is a computationally intensive 
task and the result is influenced by optimization parameters 
and convergence criteria. Other noniterative methods typically 
use only the bright-field disc for phase reconstructions which im
poses limitations on the maximum achievable resolution 
(Rodenburg et al., 1993). They rely on taking Fourier transform 
with respect to the probe positions in real space, which means 
that for conventional fast Fourier transform (FFT) algorithms, 
entire datasets (or at least substantial parts of them) have to fit 
into computer memory, which is becoming increasingly restrict
ive considering the growing size of 4D-datasets. For these rea
sons, ptychography has found many useful applications, 
mainly as a postexperiment data processing analysis step in spe
cialized studies, but has not become a mainstream imaging 
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modality so far. However, there is an increasing interest in using 
these algorithms interactively during experiments. To that end, 
live imaging using single sideband (SSB) ptychography was re
cently implemented and demonstrated by Strauch et al. (2021)
and Pelz et al. (2022), as well as live COM imaging by Yu 
et al. (2021a).

In the present work, we explore the possibility to use ma
chine learning (ML) for dose-efficient phase object (PO) recon
structions with super-resolution in (near) real-time. We show 
that using a convolutional neural network (CNN) enables fast 
exit wave retrieval for a given CBED, by using only a 3 × 3 
kernel of adjacent diffraction patterns at a time. The method 
allows the retrieval of exit waves, with a resolution theoretically 
only limited by the Nyquist frequency of the detector and thus 
enables super-resolution imaging at sufficiently high doses. 
Using only nine CBEDs per probe position in a 4D-STEM 
dataset implies that the dataset can practically be of arbitrary 
size and the reconstruction can be performed live during the 
experiment with appropriate accelerator hardware, such as a 
modern, single GPU. In this paper, the character and capability 
of the proposed method are discussed in detail and demonstrated 
on both simulated and experimental data. Comparisons are also 
made with other possible live processing methods.

To the best of our knowledge, the only reconstruction meth
ods that go beyond utilizing the traditional annular detector 
and enable live imaging are SSB (Strauch et al., 2021; Pelz 
et al., 2022), integrated differential phase contrast (iDPC), 
and integrated center of mass (iCOM) (Yu et al., 2021a). 
This is why we focus our analysis on comparing the results 
of our proposed method to those methods.

Materials and Methods
Theoretical Framework
The interaction of fast electrons with thin specimens can be 
conveniently described with the phase object approximation 
(POA). As an electron passes through a positive electrostatic 

potential its wavelength λ is temporarily altered which is 
equivalent to shifting the phase of the electron (Kirkland, 
2010). For cases where the specimen is extremely thin, the 
propagation of the wave as it goes through the material can 
be neglected as a reasonable approximation and the real space 
3D electrostatic potential of the atomic structure Vs(􏿻r, z) can 
be expressed as its integral along the optical axis z, resulting 
in the projected electrostatic potential vz(􏿻r)= ∫ Vs(􏿻r, z) dz, 
which is a function of the vector 􏿻r that spans the remaining 
two dimensions. With this approximation the exit wave 
ψout(􏿻r) is simply the product of the incident wave ψin(􏿻r) and 
the object, which can be described by the transmission func
tion T(􏿻r):

ψout(􏿻r) = ψin(􏿻r)T(􏿻r) (1) 

where T(􏿻r) = exp (iσvz(􏿻r)) and σ is an interaction parameter 
(see Kirkland, 2010 for a more detailed derivation). 
However, a direct solution of the transmission function ac
cording to equation (1) is only possible if both incident and 
exit wave are known, while in practice neither of them are 
known a priori. The incident wave ψin(􏿻r), can be fairly well 
approximated as the Fourier transform (F ) of the product of 

the aperture function A(􏿻k) and an aberration-function 

(χ(􏿻k))-dependent phase shift (Zuo & Spence, 2016).

ψin(􏿻r) = F [A(􏿻k) exp [iχ(􏿻k)]] (2) 

Here, 􏿻r describes a 2D space at the object plane and 􏿻k describes 

the reciprocal space. The function χ(􏿻k), considering only the 
spherical aberration Cs and defocus Δf , is given by

χ(􏿻k) = πλk2(0.5Csλ2k2 − Δf ) (3) 

Assuming that at least the low order aberration parameters of 

χ(􏿻k) are known, equations (2) and (3) can be used to estimate 

ψin(􏿻k). The other piece of missing information is then the exit 
wave ψout(􏿻r). From a 4D STEM experiment, only the intensity 

|ψout(􏿻k)|2 can be measured (Fig. 1-②), and thus a method to re
trieve the exit waveform on the sample plane based on the in
formation accessible from the experiment is required to solve 
equation (1) to get the transmission function T(􏿻r).

Retrieving the phase of ψout(􏿻k) is a common inverse prob
lem, but is severely complicated in 4D-STEM by the presence 
of noise to a level that makes even the estimation of |ψout(􏿻k)| a 
challenging task in its own.

The idea in this study is to leverage the multislice formalism, 
incorporating the calculation of electrostatic atomic potentials 
(Lobato & Van Dyck, 2014) and the frozen phonon approxi
mation (Van Dyck, 2009), as a forward model to generate a 
large synthetic dataset. This dataset can then be used to train 
a CNN to retrieve an estimate of ψout for any given experiment 
within the boundaries of the validity of the used forward mod
el and within the parameter space of the training data, which 
will be discussed in section “Training Data Generation” and is 
given concisely in Table 1.

General Workflow
The general concept of the proposed reconstruction method is 
schematically illustrated in Figure 1. The workflow to retrieve 
the object T(􏿻r) (Fig. 1-①) of a 4D-STEM dataset (Fig. 1-②) can 
be divided into two main steps: first, a neural network, trained 
to solve the inverse problem as outlined in section “Neural 

Fig. 1. General workflow: A patch of the phase object ① of a 4D-STEM 
dataset ② is reconstructed by extracting a 3 × 3 kernel of adjacent CBEDs 
③, using a CNN ④ to reconstruct the amplitude (|ψout(􏿻r)|) and phase 
(ϕout(􏿻r)) of the exit wave of the central CBED ⑤ and using the phase object 
approximation to reconstruct the object patch ⑥ from the reconstructed 
exit wave and an estimated probe function ψin(􏿻r ). Patches are then 
stitched together by complex addition to yield a reconstruction of the 
full-phase object.
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Network Implementation,” reconstructs the phase ϕout and 
amplitude |ψout| of the exit wave, based on the intensity meas
urements of a 3 × 3 kernel of adjacent diffraction patterns, as 
depicted in Figure 1-③–⑤. Second, a patch of the object is re
trieved from the previously reconstructed exit wave according 
to equation (1), as shown in Figure 1-⑥.

In order to take the relative position of each individual ob
ject patch into account, a phase factor is included to the ap
proximated ψin(􏿻k) and the predicted ψout(􏿻k) so that their real 
space counterpart ψin(􏿻r) and ψout(􏿻r) are found at the right pos
ition. This phase factor ϕshift is a function of the displacement 
of the probe position in the x and y directions (Δx and Δy) with 
regard to the center of an array of size Nx × Ny.

ϕshift(Δx, Δy) = exp 2πi
Δx
Nx

+
Δy
Ny

􏼒 􏼓􏼔 􏼕

(4) 

The real space wave functions considering the phase factor are

ψin,n(􏿻r) = F {ψin(􏿻k) × ϕshift,n}

ψout,n(􏿻r) = F {ψout(􏿻k) × ϕshift,n}
(5) 

In equation (5), F is Fourier transformation, and the amount 
of displacement Δx and Δy is absorbed into n, which specifies 
the nth probe position.

The POA assumes that the retrieved object patch should 
have a homogeneous amplitude of 1 with a phase distribution 
reflecting the projected potential of the imaged material. 
However, since the transmitting electron probe carries infor
mation mostly from a specific region of the examined sample 
at the probe position, the retrieved object patches are given a 
weighting function ωn according to the nth incident probe in
tensity distribution, and the accordingly weighted object patch 
ψpatch,n is expressed as

Tpatch,n(􏿻r) =
ψout,n(􏿻r)/ψin,n(􏿻r)
|ψout,n(􏿻r)/ψin,n(􏿻r)|

× ωn(􏿻r) (6) 

with the weighting function ωn as

ωn(􏿻r)

=
|ψin,n(􏿻r)|2􏽐
􏿻r
|ψin,n(􏿻r)|2

if|ψin,n(􏿻r)|2 > 1
10 max (|ψin,n(􏿻r)|2)

0 if otherwise

⎧
⎨

⎩

(7) 

This procedure is repeated for all real space coordinates in the 
4D-STEM dataset and the object patches are combined into 
the final phase object T by complex addition over n probe 

positions.

T(􏿻r) =
􏽘

n

Tpatch,n(􏿻r) (8) 

The object patch estimations coming from the CNN are not 
perfect but carry some errors. However, the full object is the 
combined result of the predictions made at multiple probe po
sitions (equation (8)). Even if one particular prediction is very 
inaccurate, its impact on the final result is limited as long as it 
is outweighed by the contributions from neighboring probe 
positions, which is the case when a significant probe overlap 
is established by a dense scanning raster.

Training Data Generation
We created a large synthetic dataset, using atomic structures 
extracted from the materials project (Jain et al., 2013) data
base. Based on the unit cell definitions we created bulk speci
mens in one of the low-index zone axis orientations given in 
Table 1. Each sample consists of a 3 × 3 kernel of simulated 
CBED patterns as features and the corresponding exit wave 
in real-space as label. The simulations were performed using 
the multislice formalism and the frozen phonon approxima
tion. In the implementation given by Lobato & Van Dyck 
(2015), Lobato et al. (2016), following the derivation of 
Van Dyck (2009) the CBED intensity can be expressed as 
the sum of coherent and incoherent intensities.

〈|ψout(􏿻k)|2〉 = |〈ψout(􏿻k)〉|2 + 〈|δ(􏿻k, t)|2〉 (9) 

where ψout(􏿻k) is the exit wave, δ is a phonon 
configuration(t)-dependent difference and 〈〉 denotes the aver
age over t. This formalism gives us access to the average, co
herent, complex wave function. We use this wave function 
of the central CBED of the 3 × 3 kernel as labels (i.e. the 
ground truth training target) and the CBED intensities of all 
patterns in the kernel, as given in equation (9) as features 
(i.e. the CNN input). Only low order aberration parameters 

Δf and Cs of χ(􏿻k) (equation (3)) are considered as they are un
avoidable and typically have the strongest influence. We as
sume that including these effects phenomenologically with a 
constant, small Cs and corresponding Scherzer defocus is suf
ficient. Temporal and spatial incoherence are also not taken 
into account. This reduces the parameter space considerably 
but also implies that the method is (for now) limited to aber
ration corrected, well-adjusted microscopes.

Table 1. Simulation Parameters for the Training Dataset.

Description Value

Acceleration voltage ∈ {30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 300} kV
Step size (􏿻r) 0.0167…0.33 Å
Convergence angle 5 . . . 30 mrad
Spherical aberration 0.001 mm
Defocus Scherzer defocus
Frozen phonons 30

Atom rmsd 0.08 Å
Orientation ∈ {[1 1 0], [0 1 1], [1 0 1], [0 0 1], [1 0 0], [0 1 0], [1 1 1]}
Thickness <30 Å
Dose 3 . . . 3 × 109 e/CBED
Structures 126,335
Samples 742,688
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Further, the dataset includes the CBED-size in Å
−1

, the aper
ture size and the acceleration voltage, which allows the com
putation of the probe function ψin(􏿻k) within the data 
preprocessing pipeline during the training using equations 
(2) and (3). Also, the effect of finite electron dose is applied 
as a data augmentation step during the training, assuming 
only Poisson noise. To accommodate the possibility that there 
may be no specimen interacting with the beam, another aug
mentation step replaces the CBEDs with the probe function in
tensity with a 3% chance. An example of the resulting training 
sample inputs and labels is illustrated in Figure 2 in the “in
put” and “ground truth” panels, respectively. All parameters 
describing the dataset are summarized in Table 1. 
Visualizations of the parameter distributions are shown in 
Supplementary Figure S1. The data generation code was pub
lished open source under https://github.com/ThFriedrich/ 
ap˙data˙generation, as well as the training dataset used 
(Friedrich et al., 2022b).

Neural Network Implementation

CNN Architecture
The complexity of the inverse problem practically dictates the 
use of deep neural networks in this study. The U-Net architec
ture (Ronneberger et al., 2015) is one of the most popular 
choices for deep learning applications, since it allows to ex
pand the number of parameters considerably, while maintain
ing strong backpropagation. Each depth level in the 
“U-shape” reduces the filter map size which accommodates 
the retrieval of features of different sizes. This makes the 
U-NET an extremely versatile and easy to train CNN and 
hence suitable as a starting point for this project as well 
(Friedrich et al., 2021). However, since the training target is 
naturally complex valued, a generic pixel-to-pixel mapping, 
as commonly employed for CNNs in image processing, cannot 
be used. Two popular ways of dealing with this exist. First, 
both, phase and amplitude retrieval problems can essentially 
be treated separately by defining two outputs and optimizing 
for dedicated loss functions on the phase and amplitude com
ponents of the wave function (Wu et al., 2021). This treats the 
complex wave as two real valued images, which in practice has 
the advantage that common, highly optimized AI tools can be 
readily employed. Another approach that naturally lends itself 
to this kind of problem is using complex valued neural net
works (Trabelsi et al., 2018); an approach that has found rela
tively few applications so far. However, the theoretical 
framework for complex CNNs is established (Trabelsi et al., 
2018) and implementations have been showing promising re
sults (Virtue et al., 2018; Munshi et al., 2022). We imple
mented the U-NET architecture for both CNN types to test 
the main ideas. The complex networks delivered reconstruc
tion results and accuracies of predicted phases, which are, 
for all intents and purposes, equivalent to the real valued 
CNN, while decreasing the speed performance considerably. 
Since live imaging is an envisioned application, inference speed 
is a critical concern and the faster real valued CNN was chosen 
in the study accordingly.

The structure of the U-NET is modified to account for phys
ical considerations. The aim of the neural network is to model 
the electron-specimen interaction. Adding skip connections 
from the input probe function to the output exit waves 
(essentially enabling global residual learning) isolates the spe
cimen interaction contributions from the probe function 

contributions to the exit wave. The CNN, therefore, does 
not need to learn to actually model the electron probe. The 
skip connections have the additional benefit of providing a 
common template during inference. The training is done on 
isolated scan points of only 9 CBEDs per specimen, while dur
ing inference the probe function should be consistent for the 
entire dataset, which is a requirement that cannot be captured 
by any metric during the training. Providing an estimated 
probe function greatly promotes this consistency during infer
ence. Global residual learning also enhances noise robustness 
because the probe function serves as template, which is hardly 
altered if the input is merely noise.

On the input, the dynamic range of the CBEDs is being 
scaled by taking them to the power of 0.1 in a preprocessing 
step, which puts more relative weight on the dark field scat
tered electrons to support exit wave reconstructions beyond 
the convergence angle. Subsequently, each pattern is scaled, 
according to equation (10) depending on its distance from 
the central beam position, where ζxy and ζd correspond to 
the CBED weights adjacent to the central CBED along x and 
y and on the diagonal, respectively. This is a straightforward 
way to include the step size Δs into the workflow.

ζxy =
1

Δs ∗ 50
, ζd =

1
���������
2 ∗ Δs2
√

∗ 50
(10) 

The constant factor of 50 accounts for the range of step sizes in 
the training datasets such that all ζ are between 0 and 1. The 
effect of this weighting can be seen in the “Input” panel of 
Figure 2, evident by the higher mean intensity of the central 
CBED.

Other notable differences as compared to the original 
U-NET implementation (Ronneberger et al., 2015) are differ
ent map sizes, the use of Swish-Activation functions 
(Ramachandran et al., 2017) and the use of strided convolu
tional layers instead of max-pooling layers to avoid any loss 
of information when feature map sizes are reduced. 
Trainable scaling factors on the two output layers for the 
phase and amplitude were added to scale between the batch- 
normalized feature maps (with standard deviations of 1 and 
means of zero) in the CNN and the relatively small target value 
distributions, which correspond to the difference between exit 
waves and probe functions. The variables were initialized ac
cordingly with small values of 1 × 10−4 and optimized during 
training. The amplitude output layer includes a regularization 
which penalizes integrated exit wave intensities >1. The phase 
output layer penalizes values larger than π and smaller than 
−π. These penalties are added to the loss during training. 
The resulting overall architecture is depicted in Figure 3. The 
tensorflow implementations of the models and individual 
layers are available open source on Github at https://github. 
com/ThFriedrich/airpi. During the training the CNN can pro
cess >750,000 sample points in about 6 min on a single Nvidia 
RTX 3080 GPU, indicating that the model itself may be well 
suited for live processing at rates >2 kHz, if the pre and post
processing pipelines are well optimized.

Loss Function
To facilitate the learning of a general representation for both 
the phase and amplitude we designed a multi-objective loss 
function as a linear combination of L2-losses on the phase 
and the amplitude in fourier space and in real space. 
Enforcing the correspondence between 􏿻r and 􏿻k-space during 
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the training encourages the CNN to abide to physical con
straints. It was also observed that the decomposition of the 
phase into its sin and cos components facilitates better conver
gence, compared to just optimizing for the phase directly. This 
is presumably related to the decompositions being smooth so 
the CNN does not have to account for phase wrapping effects. 
Since the probe function is an input to the CNN the object can 
be solved directly and used in the loss function too. The opti
mization of the L2 error of the phase of the object T(􏿻r) directly 
promotes an agreement of the object with the transmission 
function, which is practically the most meaningful metric. 
However, a good quantitative match may be impossible to 
achieve in certain scenarios (e.g. very low dose). To promote 
at least a visual match, the object phase is also optimized for 
its cross correlation xc as given in equation (14). Further it 
was empirically determined that a higher weight on the phase 
in (􏿻k)-space leads to faster convergence and overall better re
sults. Putting all terms into a sum, for an exit wave ψ with 
phase ϕ and an object phase ϕobj the loss function is given by

L = L2(|ψ(􏿻k)|2) + (L2(sin ϕ(􏿻k)) + L2(cos ϕ(􏿻k))) ∗ 3

+ L2(|ψ(􏿻r)|2) + L2(sin ϕ(􏿻r)) + L2(cos ϕ(􏿻r))

+ L2(ϕobj(􏿻r)) + Lxc(ϕobj(􏿻r))

(11) 

with

L2(x) = (xtrue − xpredicted)2 (12) 

Lxc(x) = (1 − xc(xtrue, xpredicted))/2 (13) 

where

xc(x, y) =
􏽐

i,j [(y(i, j) − y)(x(i, j) − x)
�������������������􏽐

i,j [y(i, j) − y]2
􏽱 �������������������􏽐

i,j [x(i, j) − x]2
􏽱 (14) 

where x and y correspond to pixel values at the locations (i, j) 
and x and y are the mean values, respectively.

Training
The training was performed using the Adam optimizer with a 
learning rate of 5 × 10−4, a batch size of 256 and a momentum 
setting of 0.9. The learning rate was decreased by a factor of 
0.5 when the validation loss did not decrease for 3 epochs. 
Convergence was reached after ≈50 epochs. After conver
gence the training was resumed for another 10 epochs with 
a weighting factor of 10 applied to the L2(ϕobj(􏿻r)) term of 
equation (11), which leads to a further small decrease on the 
object error. This step does not alter the reconstruction results 
considerably but improves the quantitative match between re
constructed objects and transmission functions somewhat.

Experiments and Simulations
The demonstrations of the reconstruction methods are per
formed on both experimental and simulated datasets. For 
the experiments, probe corrected Thermo Fisher Titan 
(X-Ant-TEM) and Themis (Advan-TEM) were used. The for
mer is equipped with a MerlinEM direct electron detector 
(Ballabriga et al., 2011) and the latter with a custom-made 
Timepix3 detector (Poikela et al., 2014). For the experimental 
datasets of an Au crystal and a SrTiO3 focused ion beam la
mella, which can be found in the online repository (Yu 
et al., 2021b), the acceleration voltage is set at 300 kV, the 
semi-convergence angle of the electron beam is 20 mrad, and 
the scanning step size 0.2 and 0.185 Å, respectively. The 
USY-zeolite dataset, which can be found in Jannis et al. 
(2021b), is collected at 200 keV, with 12 mrad convergence 
angle and 0.15 Å step size. The simulated twisted bilayer 
graphene dataset is generated with an acceleration voltage 
200 kV, a convergence angle of 25 mrad, and a scan step 
size 0.2 Å. The twisted bilayer MoS2 dataset was simulated 

Fig. 2. Example of an exit wave reconstruction taken from the validation dataset, illustrating the inputs and outputs of the CNN, as well as the Fourier 
transforms of the (real space) exit waves. Intensities and amplitudes are depicted in log scale.

Fig. 3. The CNN architecture used in this study is a modified U-NET with 
separate, real valued phase and amplitude outputs. The model leverages 
global residual learning through added skip connections of the probe 
function to the output. Each “convolution layer” is composed of a 2D 
convolution layer, batch normalization and a swish-activation function. 
Each “convolution block” consists of three consecutive convolution 
layers.
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with the settings: acceleration voltage 300 kV, convergence 
angle 20 mrad, and scan step size 0.1 Å. The MgO dataset 
was created with an acceleration voltage of 300 kV, a conver
gence angle of 20 mrad, and a scan step size 0.05 Å. All of the 
simulated datasets are generated with the MULTEM software 
(Lobato & Van Dyck, 2015).

Results and Discussion
Super-Resolution
The reconstruction of the proposed method is based on solving 
equation (1) for the object using the incident and the exit wave 
functions, and therefore the resolution of the method is not ex
plicitly limited by neither the optical conditions of the imaging 
system nor the sampling density of the electron probe. By reci
procity, the object plane is sampled with a maximum reso
lution determined by the maximum scattering angle the 
detector can reach, or the highest angle at which the exit 
wave can be accurately retrieved, which can potentially result 
in a higher resolution than permitted by the former two 
limitations.

This super-resolution granted by the knowledge of the exit 
wave at higher scattering angles is demonstrated by the recon
struction of a simulated dataset of a twisted bilayer graphene 
sample at infinite dose (Friedrich et al., 2022a). The result 
from the CNN reconstruction is shown in Figure 4a, and com
pared with a SSB reconstruction in Figure 4b.

To analyze the spatial frequency achieved by each method, 
the Fourier transformed (FT) images are presented as well 
(Figs. 4d, 4e). The circle in the FT SSB image indicates twice 

the range of the convergence angle (α), which is the upper limit 
of the spatial frequency of this reconstruction method 
(Rodenburg et al., 1993), and therefore all the frequency com
ponents beyond are eliminated. The reconstruction of the 
CNN successfully retrieves components beyond this limita
tion, also reflected in the ability to distinguish atoms with 
very short spacing in between, as can be seen in the atom pairs 
profile (Fig. 4c).

The improved resolution capability of the method, as well as 
its dependency on the individual per-CBED-dose (more thor
oughly discussed in section “Step Size”) are also demonstrated 
on an experimental USY-zeolite dataset (Jannis et al., 2021b). 
This dataset has a fiarly low dose and small step size. To in
crease the dose of each individual diffraction pattern, the 
CBED at each probe position is replaced by a summation of 
CBEDs within a 5 × 5 box, while the reconstruction is done 
with a step size twice as large as originally. This repetition in 
data usage increases the effective dose in the dataset, as each 
individual CBED now contains 25/4-times more electrons 
and greatly increases the accuracy of the neural network pre
diction. The actual dose that inflicts damage while interacting 
with the material, on the other hand, remains the same. For 
comparison, SSB is performed on the original dataset and a da
taset with the same data repetition strategy applied. In 
Figure 5, it is shown that the last three reconstructions success
fully build a clear image of the zeolite crystal structure with 
atomic-level resolution. The CNN reconstruction based on 
the original dataset (Fig. 5a) does not showcase a similar qual
ity, since the dose for individual CBEDs is too low to make ac
curate predictions of the exit waves, but after data repetition is 

(a) (c)(b)

(d) (e) (f)

Fig. 4. Demonstration of super-resolution capabilities on simulated datasets with infinite dose. Compared are CNN reconstructions and standard SSB 
ptychography (b). Their corresponding Fourier transformed (FT) intensities show the maximal spatial frequency achieved by each method (d,e). For the FT 
image of the SSB result, a circle indicating twice the convergence angle is added, which corresponds to the maximal spatial frequency of the method. 
(c) Shows the intensity along the line profile drawn in each image. Markers on the x-axis indicate atom positions. (f) Depicts the integrated intensity of the 
FT images along y-axis.
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applied, the neural network gives results that capture details of 
the material (Fig. 5b). SSB, on the other hand, does neither 
benefit nor suffer from this repetition, at least not at a notice
able level. From the Fourier transform of the three images one 
can estimate the resolution limits of the methods by comparing 
the most distant frequency component. The neural network 
reconstruction shows a maximum frequency component at 
0.78 Å

−1
, which according to the Raleigh criterion:

d =
0.61λ
sin α

(15) 

is equivalent to the resolving power of an un-aberrated perfect 
optical system of convergence angle 12 mrad, which is the 
same as the aperture size used in the experiment, at the elec
tron wavelength (λ) of 0.02 Å. As most of the microscopes, 
even ones equipped with probe corrector, cannot achieve the 
resolving power given by the Raleigh criterion, the presented 
method shows the ability to overcome the effect of remaining 
aberrations, shot noise, and other imperfection in the system 
to reach a higher resolution.

Step Size
Since the proposed reconstruction method is based on retriev
ing individual object patches, which are commonly sampled fi
ner than the step the electron beam takes to scan the sample, a 
rather coarse scanning grid can produce high-quality images, 
as long as a good prediction of the exit wave, and hence the ob
ject patch, can be made. This character of the proposed recon
struction method is demonstrated on a simulated MgO 
particle with different step sizes of 0.1, 0.4, 0.8, and 1.6 Å. 
The “ratio” values shown in Figure 6 refer to the ratio of 
the diameter of the incident probe function (1.2 Å) and the 
step size, where the probe size for a given convergence angle 
α in Å

−1 
is defined by the first root of the Bessel function of 

the first kind and first order:

d = 2 ∗
3.8317

απ
(16) 

Figures in the left column are generated with infinite dose and 
therefore the neural network has very detailed knowledge of 
the amplitude of the exit wave to make accurate predictions. 
In this case, the difference between results of overlap ratio of 
12 and overlap ratio of 3 is barely noticeable. By further redu
cing the scan density, probe positions reach a distance where 
the weighting function forbids any overlap, as shown in equa
tion (7). Despite the weighting function cutoff, which creates 
blank spaces between the object patches, the actual probe po
sitions used to generate the data overlap with each other just 
enough, making exit wave predictions possible to maintain 
the crystal structure to a certain level in the reconstructed im
age. As the step size reaches 1.6 Å and the ratio drops below 1, 
the retrieved object patches deteriorate severely and no longer 
reflect any crystal periodicity. This failure shows that the neur
al network follows certain physical and mathematical con
straints, such as necessary probe overlap for accurate exit 
wave retrieval, and that it would fail rather then making false 
predictions that continue to resemble atoms or the crystal. 
This failure can be identified by the user not only based on 
the deviation of the resulting image from the expected appear
ance of the object, but also by the wide blanks left between the 
object patches, indicating insufficient probe overlap.

The images in the right column of Figure 6 were generated 
with the same dose per area. As mentioned in the previous sec
tion, the accuracy of the retrieved object patch is not directly 
related to the total dose in the dataset, but rather to the dose 
per CBED. By this consideration, it follows that larger step 
sizes work better for the neural network, since this would 
mean fewer probe positions in the same area and a higher 
dose at every individual CBED. On the other hand, a certain 

(a) (b) (c) (d)

Fig. 5. Reconstruction results of three different approaches. (a,b) Neural Network performed on datasets without and with data repetition, respectively. 
(c,d) SSB reconstruction done on datasets without and with data repetition, respectively. The Fourier transforms of the reconstructed images are shown 
below. Notice that in (a) vertical streaks of very strong intensity can be found, which originate from an unknown defect of the detector, also reported by 
Jannis et al. (2021a).
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level of probe overlap is also required for accurate predictions. 
Therefore, not only the total dose per area, but also the scan
ning strategy is an important consideration for the proposed 
method. A balanced scan density will generate better results 
as compared to a very fine scan grid, even if the total dose 
per area would be the same. This behavior is illustrated in 
the images in the right column of Figure 6. The noise level is 
lowered significantly as the step/probe-width ratio drops 
from 12 to 3 in Figures 6h and 6f. Ptychographic methods in 
comparison offer more flexibility in this regard as shown in 
Figures 5c and 5d.

The noise created by inaccurate predictions also creates dif
ferent features as the step size changes. As the training is 

exclusively done on crystalline materials in zone axis orienta
tions, the predicted object patches may show atomic-scale fea
tures, even if it the input is merely noise. In other words, the 
frequency transfer function of each object patch is highest at 
the spatial frequency that would compose an image of an 
atom. This somewhat dangerous behavior of the neural net
work is compensated by the stitching of the patches, since 
atomic-scale features of the noise would not remain sharp as 
multiple object patches contribute to the same area, and would 
thus contribute to a cloudy, low-intensity background, as seen 
in Figure 6h. However, when the degree of overlap is reduced, 
such that the phase value is completely determined by 1 or few 
object patches, the risk to observe a false, atom-like feature, 
such as the ones seen in Figures 6f and 6d, greatly increases. 
Awareness of this effect is, therefore, important when using 
the method and large step-size scanning patterns should be 
treated with extra caution. The other effect of noise is that 
the phase value drops in cases of very few electrons per 
CBED. This is essentially related to the failure of the CNN 
at making accurate phase object predictions, but it also shows 
that as long as the sufficient dose is present in the 3 × 3 CBED 
input set, the phase value retrieved is not strongly related to 
step size.

Contrast Analysis
As outlined in section “Theoretical Framework,” the phase of 
the object is proportional to the electrostatic potential. By this 
relation atomic species should, at least within the boundaries 
of the POA, be distinguishable. To verify whether this 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Reconstruction results of simulated MgO particle. In the left 
column (a,c,e,g) the images are generated with infinite dose, and in the 
right (b,d,f,h) the dose is set to be 500 electron per Å

2
. Each row of 

images is constructed with the same step size, as well as the same step/ 
probe-width ratio. The colorbar in the bottom left panel applies to all 
images in the figure.

(a)

(b)

(c)

Fig. 7. Phase response of the CNN compared to ground truth 
transmission functions for simulations of single atoms throughout the 
periodic table at infinite dose for (a) peak intensity, (b) mean over 3 × 3 
pixels around the atomic position, and (c) mean over 5 × 5 pixels around 
the atomic position.
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requirement holds true for the CNN reconstructions, 4D 
STEM datasets of isolated, single atoms for each species in 
the periodic table up to Z = 103 are simulated individually 
with a step size of 0.2 Å, a simulation box size of 3 × 3 Å, 
an aperture angle of 20 mrad, and a collection angle 60 
mrad. The frozen phonon approximation was used with a 
root-mean-square-displacement of 0.08 Å and 100 phonon 
configurations for each simulation. The retrieved phase ob
jects of these datasets are compared to the ground truth trans
mission function, which is based on the parameterization by 
Lobato & Van Dyck (2014). The comparison is carried out 
by taking averaged phase values from pixels within various 
ranges. In Figure 7, from top to bottom, the curves show phase 
values at the peak only (Fig. 7a), averaged phase over 3 × 3 
pixels around the atomic position (Fig. 7b), and the average 
over 5 × 5 pixels (Fig. 7c). Both, the curves of the ground truth 
transmission function and the CNN predictions, generally in
crease against atomic number, with the exception of certain 
dips at larger averaging ranges. This effect stems from differ
ent electron orbital distributions in the radial direction, and 
thus only the phase value averages at larger ranges are sensi
tive to this difference. The CNN predictions obviously also 
preserve these sub-atomic level details to some extent, as the 
shape of the curves bear strong resemblance to the ground 
truth curves. Although the reconstructed phase values and 
the transmission functions do not match exactly, the predic
tions are accurate enough, such that the phase values of the re
constructed objects are indeed useful as an indicator for 
different atomic species, potentially even allowing semi- 
quantitatively predicting the exact atomic species.

For thick samples, the method is not expected to yield re
sults in quantitative agreement with projected potentials, be
cause even if the neural network would retrieve the correct 
exit wave, the reconstruction algorithm is still based on the 
POA and inherits its limitations. The analysis of thicker sam
ples presented here is, therefore, done in a more qualitative/ 
empirical manner and comparisons are made against ADF im
aging and SSB. ADF images are well known for their strong 
contrast related to the scattering power of the imaged object, 
and thus are suitable for examining the thickness variation 
of the sample (De Backer et al., 2016) and local elemental 
compositions (Pennycook & Boatner, 1988). The contrast of 
SSB reconstructions is not as strong as ADF (Yang et al., 
2016), yet the method is often used to study crystals contain
ing elements of a wide range of atomic numbers due to its abil
ity to image heavy and light atomic columns at the same time 
with distinguishable contrast (Lozano et al., 2018). Albeit a 
quantitative match can hardly be expected, it is important to 
verify whether reconstructed phase images still reflect the rela
tive projected potentials of thicker samples to avoid misinter
pretations. To that end an experimental dataset of a SrTiO3 

FIB-lamella was analyzed. The reconstruction results are pre
sented and compared to ADF and SSB images in Figure 8.

For ADF imaging the contrast difference between the Sr and 
O columns is too large, making it difficult to locate the O 
columns without the help of the profiling. On the other 
hand, the SSB reconstruction does successfully image both 
atomic column types. While the peak intensities of the col
umns are ambiguous, they can still be distinguished by their 
corresponding size. The O columns are sharper than the Sr 
ones, indicating that an integrated signal from the area of 
each column could still be used as a reference of the local 
projected potential. The CNN reconstruction exhibits the 

advantage of both: while the light atom columns are observ
able, both the intensity and size differences are large enough 
to distinguish their types. This confirms, that the Z-contrast 
sensitivity is preserved for thicker specimen.

To further investigate the thickness dependence of the 
retrieved phase signal, an experimental dataset of the tip of 
an Au nanorod was used. As shown in Figure 9, the intensity 
recorded by the virtual low angle ADF (LAADF) detector 
(20–30 mrad) and HAADF detector (45 mrad and beyond) in
creases from the top to the bottom of the image. Based on stat
istical analysis of the HAADF signal to retrieve atom counts in 
each column (De Backer et al., 2016), the thickest part in the 
image is about 9 nm. A line profile is then drawn for each im
aging method presented in the figure. For the two ADF im
aging methods at different collection angle, the profiles show 
monotonic increase at different pace against thickness, while 
the SSB profile only shows locations but the intensity is not 
correlated to the thickness of the atomic column. Compared 
to these profiles, the CNN reconstruction appears to be quali
tatively most similar to the one of HAADF, and correlates with 
the estimated thickness accordingly. It should be noted that 
the maximum thickness of ≈9 nm is well outside the parameter 
range of the training data (<3 nm). Also the SrTiO3-sample, 
being a FIB-lamella, should be well beyond 3 nm thickness. 
This means that these examples also demonstrate the extrapo
lation capabilities of the CNN, which albeit being quantita
tively arguably inaccurate, may still provide very useful 
reconstructions for imaging purposes. The strong resemblance 
with HAADF images at larger thicknesses may in fact be a very 
desirable characteristic, as it aligns well with many microscop
ists’ experience and intuition.

(a)

(b)

(c)

Fig. 8. Reconstructed images of SrTiO3 with (a) virtual ADF detector, 
(b) SSB, and (c) CNN. Line profiles are drawn to illustrate contrast 
between the heavier Sr columns and the lighter O columns, which are 
also indicated, respectively, with black and red dots under the curves.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

am
/article/29/1/395/6985579 by U

niversiteit Antw
erpen Bibliotheek user on 30 August 2023



404                                                                                                                                      Microscopy and Microanalysis, 2023, Vol. 29, No. 1

By comparing the reconstructed images from the Au crystal 
and SrTiO3, one would notice that SSB recovers contrast of 
higher spatial frequencies, such as the intensity and shape of 
atomic columns, but it does not recover long-range features in
duced by e.g. thickness variation. This is due to the band-pass 
characteristics of the method (Yang et al., 2015; O’Leary 
et al., 2021), which in practice has a cutoff for high frequencies 
and a strong tendency to attenuate low frequencies. Long-range 
features are built with low-frequency components, and thus for 
reconstruction methods that filter out, or cannot utilize signals 
that fall in the low-frequency end, these features are lost. For the 
CNN reconstruction, the object patches are also localized and 
no information beyond one probe position away are shared 
among the predictions of the exit waves. Therefore, the exist
ence of thickness-related contrast variations can only be attrib
uted to a reasonably good prediction accuracy of the CNN, also 
for the low-frequency components.

Noise Robustness
The performance of the method under different dose condi
tions is demonstrated and analyzed on a simulated dataset of 

a twisted MoS2 bilayer. The dose used for the reconstruction 
ranges from 500 to 1 × 105 e/Å

2
, and the dataset is processed 

by the proposed method, SSB, and iDPC. The methods recon
structions are illustrated in Figure 10 and compared against 
the ground truth transmission function in terms of their nor
malized cross correlations (equation (14)).

It is evident that the method is strong in all three dose con
ditions, as can be seen visually in Figure 10, and is confirmed 
by a cross correlations higher than those of the corresponding 
SSB and iDPC reconstructions. The higher cross correlation is 
not only due to a lower noise level, but also the generally better 
matched atom shape and phase value with respect to the 
ground truth, as indicated in the line profiles drawn under 
each dose condition (Figs. 10j–10l). The sharper atom shape 
is due to the superior resolution, which is confirmed by the bet
ter distinction of close atom pairs, as well as by the higher fre
quency component found in the Fourier transform of the 
image (Fig. S2). In Figure 10l, the atom profile of the CNN re
construction at high dose almost strikes a perfect match with 
the transmission function. Note that the CNN- and 
SSB-lines are not normalized or shifted, indicating that a 
very accurate wave retrieval is achieved by the CNN. 

(a) (b) (c) (d)

Fig. 9. Reconstructed images of an edge of a Au crystal using (a) CNN reconstruction, (b) HAADF, (c) LAADF, and (d) SSB. Line profiles across the 
nanorod illustrate the thickness dependence of the corresponding signals.
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Additionally, the contrast of the CNN results allows to distin
guish Mo and S2, which is more difficult with other methods, 
as their difference is much smaller. At low dose, the line pro
files suggest a stronger low-dose robustness may be found in 
iDPC, as the two peaks are preserved in the reconstructed im
age. However, the signal almost completely falls into the noise 
level, as confirmed by the Fourier transform, and thus this 
seemingly better low-dose performance could very likely be 
a coincidental noise distribution. The given example high
lights the potential of the proposed method for low-dose im
aging. As pointed out in sections “Super-Resolution” and 
“Step Size” and illustrated in Figures 5 and 6, respectively, 
the noise robustness may depend substantially on the step 
size and the effective dose per CBED. To gain an advantage 
over other methods in this regard this context needs to be tak
en into account and scanning strategies adapted accordingly.

Conclusion
This paper presents a new computational imaging method, le
veraging a CNN to retrieve complex exit wave functions from 
CBEDs and an algorithm to reconstruct the phase object from 
the predictions of the neural network. Since the exit waves are 

retrieved for each real-space coordinate in a 4D-STEM data
set, based only on a small kernel of adjacent diffraction pat
terns, the method can be employed in a sequential manner, 
thus enabling live imaging during an experiment. The ML sys
tem is based on a well-established model but streamlined to the 
task at hand and adapted to account for physical constraints 
and considerations. The model was trained on a large synthet
ic dataset of multislice simulations. Large and higher-order 
aberrations, as well as CBED distortions, like noncentricity, 
geometric distortions and hot/dead pixels are not considered 
in the training data. Therefore, experimental data may require 
a preprocessing step. The range of practical conditions for 
which the method works reliably is, therefore, arguably lim
ited accordingly to aberration corrected, well-adjusted instru
ments at this stage. The trained model, code, and training data 
are publicly available as summarized in the supplementary in
formation. In the discussion, multiple unique characteristics 
and advantages of the method are demonstrated. The 
CNN-based reconstruction is shown to enable higher resolu
tions than any other live-imaging-capable method considered, 
on simulated, as well as on experimental data, provided that a 
sufficiently high dose-per-CBED is maintained. In correspond
ence to this consideration, the effect of the step size is ana
lyzed. While a better estimation of the exit wave is obtained 
with the electron dose-per-area distributed across fewer probe 
positions, some probe overlap is necessary to insure the accur
acy of the exit wave retrieval. Hence, the method is most suit
ably applied at a balanced scan density. If these considerations 
are taken into account the reconstruction method can be very 
dose efficient.

The Z-contrast was analyzed on single atom-simulations 
across the periodic table. The phase signal of the reconstruc
tions could indeed be linked qualitatively to atomic properties 
and a semi-quantitative analysis of thin specimen within the 
limits of the POA, was shown to be possible. We confirmed 
the contrast sensitivity to atomic species and sample thickness 
on experimental datasets of a SrTiO3 FIB-lamella and an Au 
nanorod, respectively. The observed monotonic increase of 
the phase signal with thickness and nearly monotonic increase 
with atomic number indicates that quantitative analyses based 
on the reconstruction results may be feasible.

Generally, we believe the proposed method presents an at
tractive imaging modality for its super-resolution capability, 
high noise robustness, and the feasibility of qualitative or 
even quantitative contrast analysis. While further studies 
would be necessary to obtain a more detailed view on the mod
el performance over the entire parameter space (and beyond), 
we could already show that the method is robust for a wide 
range of practically meaningful applications, even exhibiting 
reasonably good extrapolation behavior well beyond the max
imum sample thickness of the training data. The fact that none 
of the examples shown in this study exist in those exact config
urations in the training data, further indicates that the system 
generalizes well within the parameter interpolation range as 
well.

Availability of data and materials
The training data, the trained model, all implementations, 
scripts, and the data generation codes are publicly available 
under their respective license terms as summarized in the sup
plementary information.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. The dose dependency of the proposed reconstruction method is 
demonstrated for a simulated dataset of twisted bilayer MoS2 (top row 
panels) and compared to the corresponding SSB (second row) and iDPC 
(third row) reconstructions. Cross correlation values xc are given with 
respect to the ground truth phase object. In (j, k, l) line profiles averaged 
in the perpendicular direction over 1.6 Å are drawn across a Mo–S2 pair in 
all the images, and shown with the ground truth. iDPC values were 
normalized by the maximum value of the transmission function.
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Supplementary material
To view supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozac002.
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