toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montoya, E.; Bals, S.; Rossell, M.D.; Schryvers, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Evaluation of top, angle, and side cleaned FIB samples for TEM analysis Type A1 Journal article
  Year 2007 Publication Microscopy research and technique Abbreviated Journal Microsc Res Techniq  
  Volume 70 Issue 12 Pages 1060-1071  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ITEM specimens of a LaAlO3/SrTiO3 multilayer are prepared by FIB with internal lift out. Using a Ga+1 beam of 5 kV, a final cleaning step yielding top, top-angle, side, and bottom-angle cleaning is performed. Different cleaning procedures, which can be easily implemented in a dual beam FIB system, are described and compared; all cleaning types produce thin lamellae, useful for HRTEM and HAADF-STEM work up to atomic resolution. However, the top cleaned lamellae are strongly affected by the curtain effect. Top-angle cleaned specimens show an amorphous layer of around 5 nm at the specimen surfaces, due to damage and redeposition. Furthermore, it is observed that the LaAlO3 layers are preferentially destroyed and transformed into amorphous material, during the thinning process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000251868200008 Publication Date 2007-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910X;1097-0029; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.147 Times cited (down) 36 Open Access  
  Notes Aip; Fwo Approved Most recent IF: 1.147; 2007 IF: 1.644  
  Call Number UA @ lucian @ c:irua:67282 Serial 1090  
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
  Year 2015 Publication Small Abbreviated Journal Small  
  Volume 11 Issue 11 Pages 4314-4320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000360852900009 Publication Date 2015-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited (down) 36 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368  
  Call Number c:irua:127571 Serial 3136  
Permanent link to this record
 

 
Author Montanarella, F.; Altantzis, T.; Zanaga, D.; Rabouw, F.T.; Bals, S.; Baesjou, P.; Vanmaekelbergh, D.; van Blaaderen, A. pdf  url
doi  openurl
  Title Composite Supraparticles with Tunable Light Emission Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 9136-9142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and finetuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200062 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (down) 36 Open Access OpenAccess  
  Notes We thank J. J. Geuchies for help with the optical analysis, W. Vlug for providing silica particles filled with RITC, J. D. Meeldijk for his assistance with SE-STEM measurements, E. B. van der Wee for help with the calculation of the radial distribution functions, and M. van Huis and S. Dussi for very fruitful discussions. This work was supported by the European Comission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). D.V. wishes to thank the Dutch FOM (program DDC13), NWO−CW (Toppunt 718.015.002), and the European Research Council under HORIZON 2020 (grant 692691 FIRSTSTEP) for financial support. A.v.B. and F.M. acknowledge partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC advanced grant agreement 291667: HierarSACol. S.B. and D.Z. acknowledge financial support from the European Research Council (starting grant no. COLOURATOM 335078), and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:146095UA @ admin @ c:irua:146095 Serial 4732  
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. url  doi
openurl 
  Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 20 Pages 23112-23122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445220500071 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited (down) 36 Open Access OpenAccess  
  Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062  
Permanent link to this record
 

 
Author Ni, B.; Mychinko, M.; Gómez‐Graña, S.; Morales‐Vidal, J.; Obelleiro‐Liz, M.; Heyvaert, W.; Vila‐Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; González‐Rubio, G.; Taboada, J.M.; Obelleiro, F.; López, N.; Pérez‐Juste, J.; Pastoriza‐Santos, I.; Cölfen, H.; Bals, S.; Liz‐Marzán, L.M. url  doi
openurl 
  Title Chiral Seeded Growth of Gold Nanorods Into 4‐Fold Twisted Nanoparticles with Plasmonic Optical Activity Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2208299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology might hold the key to the practical utilization of these materials. We describe herein an optimized chiral growth method to prepare 4-fold twisted gold nanorods, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges were found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4, in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, we propose that dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888886000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited (down) 35 Open Access OpenAccess  
  Notes This work was supported by the MCIN/AEI/10.13039/501100011033 (Grants PID2019-108954RB-I00, PID2020-117371RA-I00, PID2020-117779RB-I00, and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant No. MDM-2017-0720), Xunta de Galicia/FEDER (Grant GRC ED431C 2020/09) and the European Regional Development Fund (ERDF). M.M., W.H. and S.B. acknowledge financial support from the European Commission under the Horizon 2020 Programme by ERC Consolidator grant no. 815128 (REALNANO). W.A. acknowledges financial support from the research program of AMOLF, which is partly financed by the Dutch Research Council (NWO). J. M.-V. and N. L. thank the Spanish Ministry of Science and Innovation for financial support (RTI2018- 101394-B-I00 and Severo Ochoa Grant MCIN/AEI/10.13039/501100011033 CEX2019-000925-S) and the Barcelona Supercomputing Center-MareNostrum (BSC-RES) for providing generous computer resources. S.G.-G. acknowledges the MCIN. B. N. acknowledges a postdoctoral fellowship of the Alexander von Humboldt Foundation. G. G.-R. acknowledges the Deutsche Forschungsgemeinschaft (GO 3526/1-1) for financial support. H.C. thanks Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. G.C-Z. acknowledges National Natural Science Foundation of China (Grant No. 21902148). Approved Most recent IF: 29.4  
  Call Number EMAT @ emat @c:irua:191808 Serial 7115  
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J. pdf  doi
openurl 
  Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 114 Issue Pages 96-105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301954300011 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (down) 34 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:97710 Serial 52  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (down) 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
 

 
Author Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.; Palenstijn, W.J.; Sijbers, J.; de Nijs, B.; van Huis, M.A.; Sanchez-Iglesias, A.; Liz-Marzan, L.M.; van Blaaderen, A.; Joost Batenburg, K.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Quantitative 3D analysis of huge nanoparticle assemblies Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 292-299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. sara.bals@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366911700028 Publication Date 2015-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (down) 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2), and from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367  
  Call Number c:irua:131062 c:irua:131062 Serial 3979  
Permanent link to this record
 

 
Author Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z. url  doi
openurl 
  Title Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 11 Pages 17729-17737  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000747115200053 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited (down) 34 Open Access OpenAccess  
  Notes The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions. Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:186465 Serial 7059  
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 8791-8798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404614700031 Publication Date 2017-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (down) 33 Open Access OpenAccess  
  Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617  
Permanent link to this record
 

 
Author Peters, J.L.; Altantzis, T.; Lobato, I.; Jazi, M.A.; van Overbeek, C.; Bals, S.; Vanmaekelbergh, D.; Sinai, S.B. url  doi
openurl 
  Title Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 4831-4837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440105500042 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (down) 33 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Commission (Grant EUSMI 731019). S.B. acknowledges funding from the European Research Council (Grant 335078 COLOURATOM). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the Grant Agreement No. 731019 EUSMI. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152997UA @ admin @ c:irua:152997 Serial 5011  
Permanent link to this record
 

 
Author Pasquini, L.; Sacchi, M.; Brighi, M.; Boelsma, C.; Bals, S.; Perkisas, T.; Dam, B. pdf  doi
openurl 
  Title Hydride destabilization in core-shell nanoparticles Type A1 Journal article
  Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 39 Issue 5 Pages 2115-2123  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000331344800022 Publication Date 2014-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited (down) 32 Open Access Not_Open_Access  
  Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313  
  Call Number UA @ lucian @ c:irua:115785 Serial 1528  
Permanent link to this record
 

 
Author Leca, V.; Blank, D.H.A.; Rijnders, G.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Superconducting single-phase Sr1-xLaxCuO2 thin films with improved crystallinity grown by pulsed laser deposition Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 89 Issue 9 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr1-xLaxCuO2-delta (x=0.10-0.20) thin films exhibiting an oxygen-deficient 2 root 2a(p)x2 root a(p) x c structure (a(p) and c represent the cell parameters of the perovskite subcell) were epitaxially grown by means of pulsed laser deposition in low-pressure oxygen ambient. (001) KTaO3 and (001) SrTiO3 single crystals were used as substrates, with BaTiO3 as buffer layer. The Sr1-xLaxCuO2-delta films were oxidized during cooling down in order to yield the infinite-layer-type structure. By applying this method, high quality single-phase Sr1-xLaxCuO2 thin films could be obtained for 0.10 <= x <= 0.175 doping range. The films grown on BaTiO3/KTaO3 show superconductivity for 0.15 <= x <= 0.175 with optimum doping at x=0.15, in contrast with previously reported data. (c) 2006 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000240236600077 Publication Date 2006-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (down) 32 Open Access  
  Notes Fom; Fwo Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:60817 Serial 3366  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited (down) 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L. pdf  url
doi  openurl
  Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 22 Pages 10198-10211  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538526500035 Publication Date 2020-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited (down) 32 Open Access OpenAccess  
  Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170218 Serial 6566  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited (down) 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 6 Pages 065019-065019,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000290472900021 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited (down) 31 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221  
Permanent link to this record
 

 
Author Musolino, N.; Bals, S.; Van Tendeloo, G.; Clayton, N.; Walker, E.; Flükiger, R. doi  openurl
  Title Modulation-free phase in heavily Pb-doped (Bi,Pb)2212 crystals Type A1 Journal article
  Year 2003 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 399 Issue 1/2 Pages 1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the complete disappearance of the structural modulation in heavily lead-doped Bi2-xPbxSr2CaCu2O8+delta crystals observed by transmission electron microscopy. Crystals with a nominal lead content of x = 0.8, corresponding to an effective lead content of x = 0.39, yield the non-modulated phase. The superconducting properties of this modulation-free phase (beta phase) have been studied and compared to those of undoped crystals displaying the modulated phase (alpha phase). Magnetisation measurements reveal that the irreversibility field H-irr(T) and relaxation rates are strongly improved within the beta phase. Measurements of the lower critical field, H-c1, show that the anisotropy factor, epsilon, is considerably reduced in the modulation-free crystals. This is the signature of stronger coupling between CuO2 layers which in turn deeply influences the effectiveness of the pinning. These measurements explain the enhanced pinning properties in moderately Pb-doped crystals in which the alpha phase and beta phase coexist. The enhanced pinning is not only due to the alpha/beta interfaces, which act as effective pinning centers: the emergence of modulation-free domains, characterized by a strongly reduced anisotropy, also significantly contribute to this effect. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000186526200001 Publication Date 2003-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited (down) 31 Open Access  
  Notes Approved Most recent IF: 1.404; 2003 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54797 Serial 2167  
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. pdf  doi
openurl 
  Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 141-148  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000368755500014 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited (down) 31 Open Access Not_Open_Access  
  Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131589 Serial 4184  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Advanced electron crystallography through model-based imaging Type A1 Journal article
  Year 2016 Publication IUCrJ Abbreviated Journal Iucrj  
  Volume 3 Issue 3 Pages 71-83  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)  
  Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368590900010 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.793 Times cited (down) 30 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793  
  Call Number c:irua:129589 c:irua:129589 Serial 3965  
Permanent link to this record
 

 
Author Rehor, I.; Lee, K.L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N.F.; Cigler, P. pdf  url
doi  openurl
  Title Plasmonic nanodiamonds : targeted coreshell type nanoparticles for cancer cell thermoablation Type A1 Journal article
  Year 2015 Publication Advanced healthcare materials Abbreviated Journal Adv Healthc Mater  
  Volume 4 Issue 4 Pages 460-468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, coreshell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349961600014 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-2640; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.11 Times cited (down) 30 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 5.11; 2015 IF: 5.797  
  Call Number c:irua:125375 Serial 2647  
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 5 Issue 5 Pages 1401997  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000352708600013 Publication Date 2014-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited (down) 30 Open Access OpenAccess  
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:126000 Serial 2994  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Altantzis, T.; Liz-Marzan, L.M.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J. pdf  url
doi  openurl
  Title Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance Type A1 Journal article
  Year 2016 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 18 Issue 18 Pages 3422-3427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Water-soluble Pt nanoflowers (NFs) were prepared by a diethylene glycol-mediated reduction of Pt acetylacetonate

(Pt(acac)2) in the presence of polyethyleneimine. Advanced electron microscopy analysis showed that NFs consist of

multiple branches with truncated cubic morphology and different crystallographic orientations. We demonstrate that the

nature of the solvent strongly influences the resulting morphology. The catalytic performance of Pt NFs in 4–nitrophenol

reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, Pt NFs display good

catalytic reusability with no loss of activity after five consecutive cycles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375697800012 Publication Date 2016-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited (down) 30 Open Access OpenAccess  
  Notes The authors would like to thank J. Millos for the XRD experiments and R. Lomba for ICP-OES elemental analysis measurements at the CACTI institute in Vigo. S. Rodal-Cedeira is acknowledged for the FTIR measurement. This research project was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology of Greece) and is co-financed by the European Social Fund (ESF) and the Greek State [project code PE4(1546)]. This work has been also supported by the Spanish MINECO (grant MAT2013-45168-R) and by the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED/FEDER “Unha maneira de facer Europa”). S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.474  
  Call Number c:irua:133670 Serial 4067  
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 316 Issue 316 Pages 850-856  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398985200089 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited (down) 30 Open Access OpenAccess  
  Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481  
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F. pdf  url
doi  openurl
  Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 22434-22441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413131700072 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (down) 30 Open Access OpenAccess  
  Notes ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S. pdf  url
doi  openurl
  Title Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting Type A1 Journal article
  Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 4 Issue 4 Pages 1700161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoheterostructures based on metal oxide semiconductors have emerged

as promising materials for the conversion of sunlight into chemical energy.

In the present study, ZnO-based nanocomposites have been developed by

a hybrid vapor phase route, consisting in the chemical vapor deposition

of ZnO systems on fluorine-doped tin oxide substrates, followed by the

functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The

target systems are subjected to thermal treatment in air both prior and after

sputtering, and their properties, including structure, chemical composition,

morphology, and optical absorption, are investigated by a variety of characterization

methods. The obtained results evidence the formation of highly

porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3

or WO3 overlayer. Photocurrent density measurements for solar-triggered

water splitting reveal in both cases a performance improvement with respect

to bare zinc oxide, that is mainly traced back to an enhanced separation of

photogenerated charge carriers thanks to the intimate contact between the

two oxides. This achievement can be regarded as a valuable result in view of

future optimization of similar nanoheterostructured photoanodes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411525700007 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited (down) 30 Open Access OpenAccess  
  Notes The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.279  
  Call Number EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 Serial 4731  
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 9 Pages 096102-96105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000323610800023 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited (down) 29 Open Access  
  Notes This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 Serial 1140  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Polavarapu, L.; Liz-Marzán, L.M.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 396-403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reliable quantification of 3D results obtained by X-ray Energy Dispersive Spectroscopy (XEDS) tomography is currently hampered by the presence of shadowing effects and poor spatial resolution. Here, we present a method that overcomes these problems by synergistically combining quantified XEDS data and High Angle Annular Dark Field – Scanning Transmission Electron Microscopy (HAADF-STEM) tomography. As a proof of principle, the approach is applied to characterize a complex Au/Ag nanorattle obtained through a galvanic replacement reaction. However, the technique we propose here is widely applicable to a broad range of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000008 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited (down) 29 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2).; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474  
  Call Number c:irua:132643 c:irua:132643 Serial 4052  
Permanent link to this record
 

 
Author González-Rubio, G.; de Oliveira, T.M.; Altantzis, T.; La Porta, A.; Guerrero-Martínez, A.; Bals, S.; Scarabelli, L.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth Type A1 Journal article
  Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 53 Issue 53 Pages 11360-11363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oxidative etching was used to produce gold seeds of different sizes and crystal habits. Following detailed characterization, the seeds were grown under different conditions. Our results bring new insights toward understanding the effect of size and crystallinity on the growth of anisotropic particles, whilst identifying guidelines for the optimisation of new synthetic protocols of predesigned seeds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412814900019 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited (down) 29 Open Access OpenAccess  
  Notes This work was funded by the Spanish MINECO (grant # MAT2013-46101-R, Ramon y Cajal fellowship to A. G.-M. and FPI fellowship to G. G.-R.). Financial support is acknowledged from the European Commission (EUSMI, 731019). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). T. A. acknowledges a postdoctoral grant from Research Foundation Flanders (FWO, Belgium). ECAS_Sara (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319  
  Call Number EMAT @ emat @c:irua:146101UA @ admin @ c:irua:146101 Serial 4734  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: