|
Record |
Links |
|
Author |
Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z. |
|
|
Title |
Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Acs Nano |
Abbreviated Journal |
Acs Nano |
|
|
Volume |
15 |
Issue |
11 |
Pages |
17729-17737 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000747115200053 |
Publication Date |
0000-00-00 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
13.942 |
Times cited |
34 |
Open Access |
OpenAccess |
|
|
Notes |
The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions.; sygma_SB |
Approved |
Most recent IF: 13.942 |
|
|
Call Number |
UA @ admin @ c:irua:186465 |
Serial |
7059 |
|
Permanent link to this record |