|
Record |
Links |
|
Author |
Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. |
|
|
Title |
Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 |
Type |
A1 Journal article |
|
Year |
2013 |
Publication |
Physical review letters |
Abbreviated Journal |
Phys Rev Lett |
|
|
Volume |
111 |
Issue |
9 |
Pages |
096102-96105 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000323610800023 |
Publication Date |
2013-08-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-9007;1079-7114; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.462 |
Times cited |
29 |
Open Access |
|
|
|
Notes |
This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; |
Approved |
Most recent IF: 8.462; 2013 IF: 7.728 |
|
|
Call Number |
UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 |
Serial |
1140 |
|
Permanent link to this record |