toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 045409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000391856000006 Publication Date 2017-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141444 Serial 4555  
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 235424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000394546100005 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141978 Serial 4557  
Permanent link to this record
 

 
Author Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Reversible structural transition in nanoconfined ice Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 064105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000393943300005 Publication Date 2017-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141994 Serial 4558  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 93 Issue 93 Pages 046101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000374962100019 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:141060 Serial 4591  
Permanent link to this record
 

 
Author Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M. pdf  doi
openurl 
  Title Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators Type A1 Journal article
  Year 2017 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 10 Issue 10 Pages 2168-2180  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000401320700029 Publication Date 2017-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 15 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 7.354  
  Call Number UA @ lucian @ c:irua:143739 Serial 4598  
Permanent link to this record
 

 
Author Tran, T.L.A.; Çakir, D.; Wong, P.K.J.; Preobrajenski, A.B.; Brocks, G.; van der Wiel, W.G.; de Jong, M.P. doi  openurl
  Title Magnetic properties of bcc-Fe(001)/C-60 interfaces for organic spintronics Type A1 Journal article
  Year 2013 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 5 Issue 3 Pages 837-841  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic structure of the interfaces between organic semiconductors and ferromagnetic contacts plays a key role in the spin injection and extraction processes in organic spintronic devices. We present a combined computational (density functional theory) and experimental (X-ray magnetic circular dichroism) study on the magnetic properties of interfaces between bcc-Fe(001) and C-60 molecules. C-60 is an interesting candidate for application in organic spintronics due to the absence of hydrogen atoms and the associated hyperfine fields. Adsorption of C-60 on Fe(001) reduces the magnetic moments on the top Fe layers by similar to 6%, while inducing an antiparrallel magnetic moment of similar to-0.2 mu(B) on C-60. Adsorption of C-60 on a model ferromagnetic substrate consisting of three Fe monolayers on W(001) leads to a different structure but to very similar interface magnetic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000315079700050 Publication Date 2013-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 28 Open Access  
  Notes ; The authors acknowledge support from the European project MINOTOR (Grant No. FP7-NMP-228424), the European Research Council (ERC Starting Grant No. 280020), and the NWO VIDI program (Grant No. 10246). The use of supercomputer facilities was sponsored by the “Stichting Nationale Computerfaciliteiten (NCF)”, financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”. ; Approved Most recent IF: 7.504; 2013 IF: 5.900  
  Call Number UA @ lucian @ c:irua:128326 Serial 4599  
Permanent link to this record
 

 
Author Partoens, B. doi  openurl
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue Pages 333-334  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000335371200003 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 8 Open Access  
  Notes Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:141068 Serial 4608  
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M. url  doi
openurl 
  Title Artificial living crystals in confined environment Type A1 Journal article
  Year 2017 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 95 Issue 6 Pages 062602  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000402667600006 Publication Date 2017-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 10 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:144205 Serial 4641  
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K. url  doi
openurl 
  Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
  Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 16 Issue 7 Pages 3699-3708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000379456700020 Publication Date 2016-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:144690 Serial 4652  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Srinivasu, K.; Korneychuk, S.; Turner, S.; Drijkoningen, S.; Pobedinskas, P.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K. pdf  doi
openurl 
  Title Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 213 Issue 10 Pages 2654-2661  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Utilization of Au and nanocrystalline diamond ( NCD) as interlayers noticeably modifies the microstructure and field electron emission ( FEE) properties of hexagonal boron nitride nanowalls ( hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3V mu m(-1), attaining FEE current density of 2.58mAcm(-2) and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride ( aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000388321500017 Publication Date 2016-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 5 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. K. J. Sankaran, P. Pobedinskas, and S. Turner are FWO Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:144644UA @ admin @ c:irua:144644 Serial 4655  
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K. doi  openurl
  Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 93 Pages 90338-90346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000385451800044 Publication Date 2016-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 8 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108  
  Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662  
Permanent link to this record
 

 
Author Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication Advanced Materials Technologies Abbreviated Journal  
  Volume 2 Issue 3 Pages 1600227  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000398999900003 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access Not_Open_Access  
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142452 Serial 4666  
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
  Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 214 Issue 6 Pages 1600889  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000403339900012 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:144219 Serial 4678  
Permanent link to this record
 

 
Author Orlova, N.V.; Kuopanportti, P.; Milošević, M.V. url  doi
openurl 
  Title Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 2 Pages 023617  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000381303800006 Publication Date 2016-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926;2469-9934; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 16 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO). P. K. acknowledges financial support from the Emil Aaltonen Foundation, the Finnish Cultural Foundation, the Magnus Ehrnrooth Foundation, and the Technology Industries of Finland Centennial Foundation. The authors thank R. P. Anderson, E. Babaev, I. O. Cherednikov, V. R. Misko, T. P. Simula, and J. Tempere for useful comments and discussions. ; Approved Most recent IF: 2.925  
  Call Number UA @ lucian @ c:irua:144673 Serial 4688  
Permanent link to this record
 

 
Author Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M.-P.; Leroux, F.; Bahnemann, D. pdf  doi
openurl 
  Title Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism Type A1 Journal article
  Year 2017 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 119 Issue 119 Pages 270-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Despite the enormous interest in the properties and applications of porous silica matrix, only a few attempts have been reported to deposit metal and metal oxide nanoparticles (NPs) inside the porous silica matrix. We report a simple approach (i.e. sol-gel hot injection) for insitu synthesis of ZnO NPs inside a porous silica matrix. Control of the Zn:Si molar ratio, reaction temperature, pH value, and annealing temperature permits formation of ZnO NPs (<= 10 nm) inside a porous silica particles, without additives or organic solvents. Results revealed that a solid state reaction inside the ZnO/SiO2 nanocomposites occurs with increasing the annealing temperature. The reaction of ZnO NPs with SiO2 matrix was insignificant up to approximately 500 degrees C. However, ZnO NPs react strongly with the silica matrix when the nanocomposites are annealed at temperatures above 700 degrees C. Extensive annealing of the ZnO/SiO2 nanocomposite at 900 degrees C yields 3D structures made of 500 nm rod-like, 5-7 pm tube-like and 35 pm needle-like Zn2SiO4 crystals. A possible mechanism for forming ZnO NPs inside porous silica matrix and phase transformation of the ZnO/SiO2 nanocomposites into 3D architectures of Zn2SiO4 are carefully discussed. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000397360000030 Publication Date 2017-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 43 Open Access Not_Open_Access  
  Notes ; A.B. would like to thank FWO – Research Foundation Flanders (grant no. V450315N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529 – INSITU) for financial support. TEM and TEM-EDX analyses were performed by Dr. F. Leroux (EMAT, Universiteit Antwerpen). XRD and DSC measurements were performed by T. Segato (4MAT, Universite Libre de Bruxelles). Notes: the authors declare no competing for financial interest. ; Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:142394UA @ admin @ c:irua:142394 Serial 4689  
Permanent link to this record
 

 
Author Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R. url  doi
openurl 
  Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
  Year 2017 Publication NPG Asia materials Abbreviated Journal Npg Asia Mater  
  Volume 9 Issue Pages e385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000402065300005 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1884-4049; 1884-4057 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.157 Times cited 8 Open Access OpenAccess  
  Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157  
  Call Number UA @ lucian @ c:irua:144263 Serial 4691  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Wright, D.P.; Aoki, T.; Peeters, F.M.; Soignard, E.; Tongay, S. url  doi
openurl 
  Title Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue Pages 12952  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000385444300004 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes ; S.T. acknowledges support from the National Science Foundation (DMR-1552220) and (CMMI-1561839). F.M.P., H.S. and E.T. were supported by the Flemish Science Foundation (FWO-Vl). Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP programme. F.P. acknowledges the funding from Flemish Science Foundation (FWO-Vl). K.W. acknowledges helpful discussions with H. Cai, W. Kong and X. Meng. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144662 Serial 4700  
Permanent link to this record
 

 
Author Bartolome, E.; Cayado, P.; Solano, E.; Mocuta, C.; Ricart, S.; Mundet, B.; Coll, M.; Gazquez, J.; Meledin, A.; Van Tendeloo, G.; Valvidares, S.M.; Herrero-Martin, J.; Gargiani, P.; Pellegrin, E.; Magen, C.; Puig, T.; Obradors, X. pdf  doi
openurl 
  Title Hybrid YBa2Cu3O7 superconducting-ferromagnetic nanocomposite thin films prepared from colloidal chemical solutions Type A1 Journal article
  Year 2017 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater  
  Volume 3 Issue 7 Pages 1700037  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High T-c superconductor-ferromagnetic heterostructures constitute an appealing playground to study the interplay between flux vortices and magnetic moments. Here, the capability of a solution-derived route to grow hybrid YBa2Cu3O7-ferromagnetic nanocomposite epitaxial thin films from preformed spinel ferrite (MFe2O4, M = Mn, Co) nanoparticles (NPs) is explored. The characterization, performed using a combination of structural and magnetic techniques, reveals the complexity of the resulting nanocomposites. Results show that during the YBCO growth process, most of the NPs evolve to ferromagnetic double-perovskite (DP) phases (YBaCu2-x-yFexCoyO5/YBaCoFeO5), while a residual fraction of preformed ferrite NPs may remain in the YBCO matrix. Magnetometry cycles reflect the presence of ferromagnetic structures associated to the DPs embedded in the superconducting films. In addition, a superparamagnetic signal that may be associated with a diluted system of ferromagnetic clusters around complex defects has been detected, as previously observed in standard YBCO films and nanocomposites. The hybrid nanocomposites described in this work will allow studying several fundamental issues like the nucleation of superconductivity and the mechanisms of magnetic vortex pinning in superconducting/ferromagnetic heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000405205300010 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.193 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support from Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0496), CONSOLIDER Excellence Network (MAT2015-68994-REDC), COACHSUPENERGY project (MAT2014-51778-C21-R, cofinanced by the European Regional Development Fund), and from the Catalan Government with 2014-SGR753 and Xarmae. Some of the electron microscopy work has also been conducted in the Laboratorio de Microscopias Avanzadas (LMA) at Instituto de Nanociencia de Aragcn (INA) at the University of Zaragoza. Part of the electron microscopy work in EMAT group ( University of Antwerp) was performed within the framework of the EUROTAPES project (FP7-NMP. 2011.2.2-1 Grant No. 280432), funded by the European Union. Work at INA-LMA was supported by NanoAraCat. Research at UCM (J.S.) was supported by the ERC starting Investigator Award, Grant No. 239739 STEMOX and Juan de la Cierva Program JCI2011-09428 (MICINN-Spain). The XMCD experiments were performed at the BOREAS beamline of the ALBA Synchrotron Light Facility with the collaboration of ALBA staff. The authors would like to thank SOLEIL synchrotron for allocating beamtime and the DiffAbs beamline staff for help during the experiments. ; Approved Most recent IF: 4.193  
  Call Number UA @ lucian @ c:irua:144852 Serial 4719  
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E. url  doi
openurl 
  Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue Pages 85  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000405900400002 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 124 Open Access  
  Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144832 Serial 4720  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. pdf  doi
openurl 
  Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
  Year 2017 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 96 Issue 1 Pages 012603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000405713900014 Publication Date 2017-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:145210 Serial 4723  
Permanent link to this record
 

 
Author Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladekt, M.; Haenen, K. doi  openurl
  Title On the Origin of Diamond Plates Deposited at Low Temperature Type A1 Journal article
  Year 2017 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 17 Issue 8 Pages 4306-4314  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crucial requirement for diamond growth at low temperatures, enabling a wide range of new applications, is a high plasma density at a low gas pressure, which leads to a low thermal load onto sensitive substrate materials. While these conditions are not within reach for resonance cavity plasma systems, linear antenna microwave delivery systems allow the deposition of high quality diamond films at temperatures around 400 degrees C and at pressures below 1 mbar. In this work the codeposition of high quality plates and octahedral diamond grains in nanocrystalline films is reported. In contrast to previous reports claiming the need for high temperatures (T >= 850 degrees C), low temperatures (320 degrees C <= T <= 410 degrees C) were sufficient to deposit diamond plate structures. Cross-sectional high resolution transmission electron microscopy studies show that these plates are faulty cubic diamond terminated by large {111} surface facets with very little sp(2) bonded carbon in the grain boundaries. Raman and electron energy loss spectroscopy studies confirm a high diamond quality, above 93% sp(3) carbon content. Three potential mechanisms, that can account for the initial development of the observed plates rich with stacking faults, and are based on the presence of impurities, are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000407089600031 Publication Date 2017-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 23 Open Access Not_Open_Access  
  Notes ; The Research Foundation – Flanders (FWO) is gratefully acknowledged for financial support in the form of the Postdoctoral Fellowships of P.P. and S.T., contract G.0044.13N “Charge ordering” (S.K., J.V.), the Methusalem “Nano” network, and the Hercules-linear antenna and Raman equipment. ; Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:145735UA @ admin @ c:irua:145735 Serial 4746  
Permanent link to this record
 

 
Author Ren, X.-N.; Hu, Z.-Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 35 Pages 29687-29698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Phase-junctions. between a cocatalyst and its semiconductor host are quite effective to enhance the photo catalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H-2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nano particles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juneted cocatalyst demonstrates a highest photocatalytic H-2 rate of 13 mmol g(-1) h(-1) under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H-2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H-2 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000410597500032 Publication Date 2017-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 18 Open Access OpenAccess  
  Notes ; B.L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y.L. acknowledges the Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China (2015DFE52870), National Natural Science Foundation of China (51502225), and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Z.Y.H. and G.V.T. acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:146765 Serial 4779  
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G. pdf  doi
openurl 
  Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
  Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 5 Issue 2 Pages 1700921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000423173800005 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access  
  Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J. url  doi
openurl 
  Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
  Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz  
  Volume 19 Issue 12 Pages 668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000419007900037 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.821 Times cited 3 Open Access  
  Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821  
  Call Number UA @ lucian @ c:irua:148548 Serial 4900  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
  Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 12 Issue 1 Pages 145-154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000425156500017 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ lucian @ c:irua:149233 Serial 4927  
Permanent link to this record
 

 
Author Wu, J.; Zhang, L.; Xin, X.; Zhang, Y.; Wang, H.; Sun, A.; Cheng, Y.; Chen, X.; Xu, G. url  doi
openurl 
  Title Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate Type A1 Journal article
  Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 10 Issue 7 Pages 6785-6792  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000426143900081 Publication Date 2018-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 7 Open Access OpenAccess  
  Notes ; The work was supported by the National Natural Science Foundation of China (Grant 21573267, 11674335), the Youth Innovation Promotion Association CAS (2013196), and the Program for Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005). ; Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:149911 Serial 4931  
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 262 Issue 262 Pages 74-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:149854 Serial 4938  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: