|
Record |
Links |
|
Author |
Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M. |
|
|
Title |
Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Nano Research |
Abbreviated Journal |
Nano Res |
|
|
Volume |
10 |
Issue |
10 |
Pages |
2168-2180 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000401320700029 |
Publication Date |
2017-04-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1998-0124 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.354 |
Times cited |
15 |
Open Access |
|
|
|
Notes |
; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; |
Approved |
Most recent IF: 7.354 |
|
|
Call Number |
UA @ lucian @ c:irua:143739 |
Serial |
4598 |
|
Permanent link to this record |