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Artificial living crystals in confined environment
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Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals”
can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals”
are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart
and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential
that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure
and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells”
formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the
potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as
Janus colloids, or with living active matter.
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I. INTRODUCTION

The dynamics of self-propelled (SP) particles, also called
microswimmers, has become a forefront theme in biophysics
research since the last decade [1,2]. Collections of mi-
croswimmers were studied as a physical model to understand
complex behaviors of a wide range of active matter including
biological and artificial systems [3]. Typical biological active
systems are usually associated with various living swimmers,
such as bacteria like Escherichia coli [4], spermatozoa [5],
volvox [6], etc., while artificial active systems were inspired
by biological swimmers and were employed by alternative
concepts to consume chemical reaction energy or heat to
generate directed motion of the microswimmers. In this
sense, artificial microswimmers are potentially more efficient.
Known synthetic microswimmers include Janus colloids [7,8],
bimetallic microspheres [9], rotating discs [10], etc. These ac-
tive systems have potential applications in medicine, biology,
material, and environmental science [2,3,11].

Previous works on microswimmers have exhibited a range
of exotic behaviors compared to those of passive systems.
These mainly comprise the dynamics of the directed mo-
tion [12,13], motion rectification in patterned environment
[14–20], giant density fluctuations [21–23], dynamic phase
transitions [24–27], and motility-sorting behavior in a mi-
crochannel [28–30]. While the literature on microswimmers
increased dramatically in recent years, some basic questions
concerning the equilibrium and nonequilibrium statistics
remained open, such as their phase behavior.

Recent experiments [31,32] reported on the formation
of a “living crystal” when the phase behavior of the mi-
croswimmers can be monitored by external driving light.
In those experiments, the microswimmers aggregated into a
“crystal” when the light was on while the crystal dissolved
when the light was off. Such a crystal was called “living
crystal” or “dynamical cluster” as it was nonequilibrium in
nature. The crystal could form, break, explode, and reform

elsewhere being illuminated by light [31,32]. In this respect,
an important question arises: Would it be possible to stabilize
the living crystal, preventing it from sudden fluctuation-driven
evolution? To address this question, here we propose a simple
model system: self-propelled particles in a trap. Without loss
of generality, the trap is chosen parabolic. The trap is weak
such that the self-propelled particles are able to move freely
and aggregate in clusters. The strength of the confinement is
chosen to prevent moderate fluctuations of the shape and the
average number of particles in the cluster. In this way, we were
able to obtain dynamical clusters of regular and well-controlled
shapes (although thermodynamically nonequilibrium) which
did not evolve in time (i.e., not breaking, exploding, reforming,
etc.). Such clusters in the shape of a ring are dynamically
stable structures of living crystals. Our analysis shows that
both the shape (also, size) and the microstructure can be
monitored by the self-velocity of the microswimmers which
is achieved by tuning the intensity of the external driving
light in the experiment. Note that in the previous studies of
dynamical clusters [26,27,33,34], the authors addressed the
collective behavior of microswimmers but did not discuss the
microstructure of their aggregates. In this work, we analyze
the collective properties and the new stable phases as well as
the microstructure of the clusters formed by microswimmers
in the presence of an attractive potential.

The paper is organized as follows. First, the model and
the numerical approach are described in Sec. II. Then, in
Sec. III, we discuss various phases of the dynamical clusters
in the trap depending on the density of the microswimmers,
i.e., formation of a lattice, elastically deformed lattice and the
saturated state. Next, in Sec. IV, we analyze the microstructure
of the dynamical clusters including shells and close-packed
circular clusters, and the resulting phase diagram of the
microswimmers. The numerical simulations of the phases
are supported by analytical results based on a single-particle
model. Finally, our conclusions are presented in Sec. V.
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II. SIMULATION

In our model, N microswimmers (MS) (also called SP
particles) move in a L × L simulation box where a parabolic
confinement potential of diameter D is located at the center
of the square. Periodic boundary conditions are applied in
the x and y directions. Following the numerical model of
Refs. [14,23], the SP particles are considered as soft disks
with diameter d interacting through a repulsive short-range
force. The motion of the microswimmers is described by the
overdamped Langevin-type equation:

∂ri

∂t
= v0ν̂i + μ

⎛
⎝∑

j �=i

Fij + Fp

i

⎞
⎠, (1)

where v0 is the self-propulsion velocity, and μ is the mobility of
the microswimmers. The repulsive interaction force between
particle i and particle j is Fij = καij r̂ij , if αij > 0 (Fij = 0
otherwise), αij = 1/2(di + dj ) − rij is the overlap distance
between particle i and j , and rij is the distance between particle
i and j . The force due to the potential is Fp

i = −Ar, if r <

D/2 (Fp

i = 0 otherwise) is directed to the center of the trap
with the strength of the potential A > 0. The stochastic term
ν̂i = (cosθi,sinθi) represents a random-direction self-velocity
of particle i, with θi(t) proportional to a Gaussian white noise
ηi(t):

∂θi

∂t
= ηi(t), (2)

〈ηi(t)〉 = 0, 〈ηi(t)ηj (t ′)〉 = 2Drδij δ(t − t ′). (3)

Here Dr is the rotational diffusion coefficient of the mi-
croswimmers, or the angular noise. Since the effect of thermal
noise has been studied elsewhere [14], here we neglect thermal
noise to emphasize the effect of rotational noise [23].

It is useful to make a transformation to dimensionless
units. For this purpose, we chose the MS diameter d as the
unit of length d ≡ r0 and t0 = 1/(μ0κ0) as the unit of time.
Then typical simulation parameters are as follows: L = 100,
D = 30, d = 1, κ = 10, μ = 1, and the total simulation time
te = 4000 with a time step 	t = 0.001. The total simulation
time te should be sufficient for the system to achieve the
dynamical equilibrium state. Clearly, this time depends on
the number of particles in the system and the location of the
trajectories of the moving particles, i.e., whether they are inside
or outside the trap. To find the optimal time, we performed
numerous simulation tests. Since we are interested in the
dynamical equilibrium states inside the trap, an important
indication of achieving dynamical equilibrium is the total
number of particles in the trap. Figure 1 shows the number
of microswimmers inside the trap versus simulation time t

of the system with the total number of SP particles varied
in a broad range from N = 100 to 12500. As seen from
the plot, the number of SP particles in the trap increases
gradually to the maximum number at about t ≈ 1000 and
this number saturates at t ≈ 2000. It is also clear from the
plot that for N � 1000, all the SP are trapped. For a larger
total number of SP particles, i.e., N > 1000, the saturation
of the number of trapped particles occurs for even shorter
times, t < 1000. However, now the number of trapped particles

FIG. 1. The number of microswimmers in the trap Ni versus
simulation time t of systems with the total particle number varied
from N = 100 to 12 500, for the rotational diffusion coefficient
Dr = 0.005, the self-propulsion velocity v0 = 1.0, and the maximum
potential strength A = 0.1. The step value of total number N has
been chosen as follows: 	N = 100 for N < 2000; 	N = 200 for
N = 2000–5000; and 	N = 500 for N > 5000. The total number N

(when N � 1000) is shown in the plot for the corresponding curves.

fluctuates around some average value (which is less than the
total number of SP particles in the system). This means that the
system of microswimmers reached the dynamical equilibrium
state when the numbers of microswimmers entering the trap
and leaving it are in balance. In our simulations, the numbers
of SP in the trap were calculated as averaged values over the
time interval 2000 < t � 4000.

III. MS PHASES IN THE TRAP: LATTICE, DEFORMED
LATTICE, AND SATURATED STATE

As shown in Fig. 1, due to the finite size of the trap, it
cannot accommodate more than Ni ≈ 1600 particles for any
total number of particles up to N = 12 500. This is illustrated
more clearly in Fig. 2 where we show the number of particles
in the trap Ni versus the total number of particles N in our
computational unit cell.

The curve in the main panel of Fig. 2 contains two distinct
linear parts. The first linear part (for 0 < N < 1000) has a
slope of 1.0, i.e., all the microswimmers, become trapped and
form a regular hexagonal lattice (indicated as phase “I” in
Fig. 2). This phase corresponds to the smooth Ni(t) curves
in Fig. 1. For the parameters used in our simulations, the
area of the parabolic trap is 900 times the area of a single
microswimmer: π × 152 = 900 × π × 0.52. When the entire
trap is filled by the microswimmers (arranged in a hexagonal
lattice), and additional microswimmers try to enter the trap
from outside, they produce elastic deformations. The elastic
deformation energy is compensated by the pressure produced
by microswimmers moving outside the trap (called “swim
pressure” [35,36]). Thus, not all the MSs can now be trapped.
The constant slope of the Ni(N ) curve (which is 0.12 for
1000 < N < 6000) is explained by the elastic response of the
microswimmers which are soft disks. With increasing the total
number of microswimmers, the swim pressure produced by
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FIG. 2. The number of microswimmers in the trap Ni versus the
total particle number N varying from N = 100 to 12 500, for Dr =
0.005, v0 = 1.0, A = 0.1. The step value of N is the same as in Fig. 1.
Regions labeled with I, II, and III correspond to “lattice,” “elastically
deformed lattice,” and “saturated” state. Inset (a): Snapshot of the
microswimmers for N = 2000, where the parabolic trap is shown by
the red circle. Inset (b): The mean square displacement (MSD) of the
microswimmers versus the total particle number N , in the xy plane
(squares); the x and y components of the MSD (circles and triangles,
respectively).

the particles moving outside the trap further increases until the
number of MSs inside the trap saturates at about Ni = 1600.
This is achieved for the total number of MSs N ≈ 6000 (see
Fig. 2). This second critical point (i.e., when Ni saturates) is
related to the onset of aggregation of MSs outside the trap. The
clusters, which gradually percolate with increasing N (this will
be discussed below), possess the same elastic properties as the
trapped MSs, and this solidification of the phase outside the
trap occurs at a constant swim pressure until the MSs fill all
the space, inside and outside the trap. This “saturated” regime
is extended from N = 6000 to 12 500 (the maximum number
of particles per simulation cell used in our simulations) and
is characterized by a constant, weakly fluctuating, number of
trapped particles Ni ≈ 1600.

To analyze self-diffusion of the microswimmers, we cal-
culated the mean square displacement (MSD) of the system,
which is presented as inset (b) of Fig. 2. Each point of the MSD
curves is obtained by averaging over time. It is clearly shown
that the MSD of the system with N < 1000 is close to zero
because all the microswimmers are trapped. The fast increase
of the MSD for N � 1000 is related to the appearance of free
microswimmers in the system; then the MSD remains increas-
ing while the total number of microswimmers increases within
the region 1000 < N < 5000. Finally, the MSD saturates at
about N ≈ 5000 and starts to decrease since the mobility of
the particles gradually decreases due to their aggregation in
clusters outside the trap.

IV. THE STRUCTURE OF THE CLUSTERS IN THE TRAP

Above, we analyzed various regimes (shown in Fig. 2) of
filling the trap by microswimmers. Here we investigate the
internal structure of the formed clusters in the trap.

FIG. 3. (a)–(d) Structures formed by N = 500 microswim-
mers for varying parameters: (a) Dr = 0.005, v0 = 1.0, A = 0.05;
(b) Dr = 0.005, v0 = 1.0, A = 0.1; (c) Dr = 0.005, v0 = 1.0, A =
0.5; (d) Dr = 0.005, v0 = 5.0, A = 0.5. Insets in (a)–(d) are the
corresponding radial distribution functions [g(r)].

Typical snapshots of the clusters formed by N = 500
microswimmers are presented in Figs. 3(a)–3(d). The insets
show the corresponding radial distribution function (RDF)
normalized to that of a random system of particles. The systems
in the upper panels [(a) and (b)] differ by the trap strength
A. The lower panels [(c) and (d)] show the distributions for
varying self-propelled velocity v0.

Figure 3(a) shows a snapshot of the self-propelled mi-
croswimmers when the trap (shown by the red circle at the
center) is very weak (A = 0.05). The motion of the MSs is
practically not influenced by the trap, and we can call this
phase “free.” The related RDF is flat approaching the value
of 1.0 which indicates that the motion of MSs is random.
Increasing the strength of the trap to A = 0.1 results in a
striking self-organization of the microswimmers in a shell
structure near the boundary of the trap [Fig. 3(b)]. Note that
such a shell structure formed by self-propelled particles is
different from the structure of a cluster of passive particles
in a trap, which is naturally close-packed [37]. Also, this
new shell structure is different from clusters of self-propelled
particles, or living crystals, found earlier in the absence of
a confinement potential which had either near-circular shape
[23] or fluctuating irregular shapes [31–33]. The formation
of the shell clusters is due to the competition between
the confining potential and the self-propulsion velocity. The
confinement force is minimum at the center of the trap, and the
microswimmers moving with velocity v0 avoid the central part
but not the boundary where the force due to the confinement
is larger. As a result, the filling of the trap by microswimmers
occurs from the boundary toward the center. However, this
depends on the relation between the parameters of the system.
For example, for strong enough confinement and large v0,
additional particles can preferably leave the trap rather than
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fill it near the center. In this way, we are able to control the
width of the shell and the density of particles in the shell.

With further increasing trap strength, the radius of the
shell decreases, and for very large strength, i.e., A = 0.5,
the central opening disappears, and the microswimmers form
close-packed structures [see Fig. 3(c)] as in the case of confined
passive particles. This can be explained as a suppression of the
self-propelled motion of the microswimmers in a very strong
trap. Indeed, the formation of a shell is due to the balance
between the self-propulsion velocity and the trap strength. If
the trap is too weak, the shell dissolves. In the opposite case of
a very strong trap, the shell collapses to a close-packed cluster.
Clearly, increasing the self-propulsion velocity v0 (for the same
large value of the trap strength A = 0.5) restores the shell
structure, as shown in Fig. 3(d). For even larger microswimmer
velocity, e.g., v0 = 0.8, the shell dissolves, due to the escape of
the microswimmers from the trap, which become free again.
These changes are further illustrated by the calculated RDF
(normalized to that for a system of free particles) shown in the
insets of Figs. 3(a)–3(d). Thus for the free phase [Fig. 3(a)]
the RDF saturates at a value equal to 1. For a wide shell, when
microswimmers are organized in a regular lattice, the RDF
has a peak and a shoulder [Fig. 3(b)]. The shoulder disappears
when the shell is compressed to a dense circular cluster
[Fig. 3(c)] and reappears again transforming into a broad peak
in the case of a dense shell [Fig. 3(d)].

To summarize, three different regimes are found inside the
parabolic trap when varying the trapping potential and the
propulsion speed. These numerical results are consistent with
the theoretical model developed by Solon and co-workers [38].
According to this model, in an infinite harmonic trap, for a
single active particle, Eqs. (1) and (2) can be rewritten as
follows:

∂ri

∂t
= −Ari + v0cosθi, (4)

∂θi

∂t
=

√
2Drη(t) − v0

ri

sinθi, (5)

where the angle θi is the direction between the particle and
the normal to the trap, and η(t) is a Gaussian unit white
noise. Using dimensionless variables τ = tDr, r̃i = riA/v0,
and η(τ ) = η(t)/

√
Dr , the above equations become [38]

∂r̃i

∂t
= − A

Dr

(r̃i − cosθi), (6)

∂θi

∂t
=

√
2η̃ − A

r̃iDr

sinθi . (7)

Thus, θi undergoes rotational diffusion in an effective po-
tential (A/r̃iDr )(1 − cosθi), whose amplitude diverges as
Dr/A → 0. In this limit, as shown in Ref. [38], the particle
is almost always at the border of the trap, although the
fluctuations of θi prevent it from reaching exactly ri ∼ v0/A,
in a band of thickness Drv0/2A2. The above model is fit for
an infinite harmonic trap [38]. We adopt this model to treat
our case, where the parabolic trap is cut off at a radius of
D/2. Therefore, the active particle will be trapped only when
v0/A < D/2 and will be untrapped otherwise. This explains

FIG. 4. (a),(b) Structures formed by N = 500 microswimmers
for varying parameters: (a) Dr = 0.005, v0 = 1.5, A = 0.2; and
(b) Dr = 5.0, v0 = 1.5, A = 0.2. The corresponding radial distribu-
tion functions g(r) are presented in (c) and (d). For the highly ordered
structure (a), the function g(r) shows clear peaks indicating strong
hexagonal correlations (c). For the case of much higher rotational
noise (b), the hexagonal correlations are suppressed (d).

the appearance of the boundary between the free and the shell
“phases,” as was shown in Fig. 3. Furthermore, the trapping
radius r ∼ v0/A and band thickness Drv0/2A2 found in Ref.
[38] are consistent with our simulations results, which makes
this model useful for the estimation of the trapping area of the
active particles in a parabolic potential.

In addition, we analyzed the influence of the rotational
noise Dr on the structure formed by the microswimmers in the
trap. We revealed that the phases (e.g., a shell or close-packed
cluster) are rather robust with respect to moderate changes
of Dr . For example, an increase of Dr from 0.005 up to
0.5 results only in a change of the local structure of the
shell from a regular lattice to a liquidlike structure. However,
for Dr = 5.0, the shell dissolves and the particles fill the
interior of the trap [cf. Figs. 4(a) and 4(b)]. The effect of
noise on the local structure is further analyzed by calculating
the corresponding radial distribution function g(r) [note that
g(r) characterizes the positional order of the particles but
not their orientation]. Under low noise, the microstructures
of active particles look crystalline [see Fig. 4(a)], and the
corresponding g(r) [Fig. 4(c)] shows many peaks. When the
noise is increased, the function g(r) in Fig. 4(d) indicates
that the structure is disordered: while short-range hexagonal
correlations still remain, the long-range crystalline order is
destroyed. This shows that a crystal formed by active particles
is not structurally different from a crystal formed by passive
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FIG. 5. Phase diagram of the systems in the plane “self-velocity
v0 versus trap strength A,” for the total number of particles N = 100
(a) and N = 500 (b), for Dr = 0.005 and varying A and v0. The
phases, i.e., free, shell, and close-packed, are indicated in the plot.
The theoretical phase boundary between the free and shell phases,
calculated using a single-particle model, v0/A = D/2 = 15, is shown
by a solid magenta line.

colloids, which will also go through dislocation-unbinding
transitions as noise increases.

The above analysis of various structures, or phases, is
summarized in the phase diagrams in the plane “self-velocity
v0 versus trap strength A” shown in Fig. 5 for two values
of the total number of microswimmers, N = 100 and N =
500. In the figure, the value of A varies from A = 0.01 to
A = 0.5 with an interval of 	A = 0.05, and v0 = 0.1 to 5.0
with 	v0 = 0.5. We distinguish three phases, namely, free
microswimmers (shown by blue color “shell” (green), and
“close-packed” cluster (red). The diagrams show that (i) low
values of A always result in the free phase; the region becomes
broader with increasing v0; (ii) low values of v0 facilitate the
appearance of the close-packed cluster; this region extends
when increasing A; (iii) the shell structures are observed
along the line v0/A = 10; the region becomes broader when
both v0 and A increase, moreover, the shell region in the
phase diagram squeezes with increasing number of particles
in the system; (iv) the boundaries between the phases oscillate
reflecting the sequential filling of the single-row shells inside
the shell structures and the close-packed circular clusters
by microswimmers. For comparison, the theoretical phase
boundary between the free and shell phases, calculated using a
single-particle model, v0/A = D/2 = 15, is shown in Fig. 5.
The theoretical phase boundary agrees with the simulated

FIG. 6. (a)–(d) Formation of clusters outside the trap in “satu-
rated” systems (when the trap is filled by microswimmers), for Dr =
0.005, v0 = 1.0, A = 0.1 and varying particle numbers: N = 6000
(a), N = 6500 (b), N = 8000 (c), and N = 10 000 (d).

phase boundary for both the cases shown in Fig. 5: N = 100
(a) and N = 500 (b).

Finally, let us briefly discuss the case of high particle
densities, i.e., when the number of microswimmers in the
trap is saturated. In Fig. 6, typical patterns formed by
microswimmers with N = 6000, 6500, 8000, and 10 000 are
presented. When increasing the density of microswimmers
above the critical value for the trap saturation, the free
microswimmers outside the trap start to aggregate in clusters
as shown in Fig. 6(b). This corresponds to the case when out
of the total N = 6500 microswimmers, approximately 1600
are trapped and 4900 are free. To characterize the collective
behavior of random microswimmers outside the trap we define
a packing fraction φout: φout = Noutπ (d/2)2/(Sb − Sp), where
Nout is the number of microswimmers outside the trap, Sb

is the area of the simulation box, and Sp is the area of the
parabolic trap. In particular, for N = 6500 the packing fraction
of free microswimmers is φout ≈ 0.4. This is consistent with
the results known from literature that the critical packing
fraction is φout ≈ 0.4 for the phase separation of gas and
solidlike phases [23,31,32]. Further observations reveal a
specific behavior, quite different from the one reported in
the literature on the formation of clusters or living crystals.
Thus, we observe a clear indication of the formation of clusters
[Fig. 6(c)] and their further percolation into a solid [(Fig. 6(d)]
near the boundaries of the simulation box rather than near the
trap. This effective repulsion of the clusters outside the trap
from the cluster confined inside the trap can be explained by an
increased mobility of the microswimmers near the boundary of
the trap where microswimmers repeatedly enter and leave the
trap. Indeed, only the particles that possess sufficient velocity
in the direction normal to the boundary of the trap are able
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to leave the trap. Leaving the trap, these higher mobility
particles form a “high mobility” region outside the trap near its
boundary (this follows from our calculations of the mobility of
the particles which are not presented here) where the formation
of clusters is less likely.

V. CONCLUSIONS

Using numerical simulations and analytical estimates based
on a single-particle model, we analyzed the behavior and the
formation of self-organized structures by artificial microswim-
mers (e.g., self-propelled Janus particles) in the presence of a
weak attractive potential, or trap. We revealed new patterns,
or phases, specific for the system of confined self-propelled
particles, namely, self-organized shells and close-packed
circular clusters. Unlike the living crystals, described in the
literature, with shapes and structures varying in time (or even
dissolving and re-forming again), the revealed patterns display
striking dynamical stability. Furthermore, their shape, size, and
the transitions between the different phases can be controlled
by a number of system parameters such as the strength of
the potential trap and the self-velocity of the microswimmers.
In turn, the latter can be controlled by the intensity of the
external light source (fueling Janus microswimmers). On the

other hand, the strength of the trap can be monitored by
the intensity of the laser or other source of the attractive
trap. The results obtained here provide new insights into
the dynamics of active particles (microswimmers) and could
be useful for an understanding of the collective behavior of
living active systems. Our predictions can be readily verified
in experiment with either artificial microswimmers (Janus
particles) or with active living systems (bacteria, sperm, or
other active microswimmers) confined in a parabolic trap.
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