toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Laureys, A.; Richardson, P.; Verhasselt, K.; Chaves, I.A.; Melchers, R.E.; Van Den Bergh, K.; Depover, T.; Verbeken, K.; Potters, G.; De Baere, K. doi  openurl
  Title Evaluation of corrosion impeding concretion layers formed on shipwreck steel in the Belgian North Sea Type A1 Journal article
  Year 2024 Publication Corrosion Abbreviated Journal  
  Volume 80 Issue 5 Pages 539-555  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Steel shipwrecks buried along the Belgian and French North Sea coast have proven to show very low corrosion rates due to concretion. This work aims to provide an in-depth analysis of the formed concretion layers and gain a more complete understanding of the gradual deposition processes in the North Sea. Detailed microstructural characterization by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction of two different specimens demonstrates that the concretion includes a complex structure of multiple layers. Closest to the metal surface, a layer of 100% akaganeite is found. It forms from corrosion products exhibiting high Cl- ions concentrations at the metal surface. Next, other iron oxides, such as goethite, lepidocrocite, and magnetite, are observed. Then, layers that both contain corrosion products and compounds from the environment are present. These layers contain calcium carbonates (calcite and aragonite), calcium sulfate (gypsum), and quartz (sand). Moreover, due to a displacement of calcium by iron, an additional phase is formed consisting out of hard, dense siderite mixed into calcite. Finally, the surface of the concretion is covered by a biofilm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001226688800005 Publication Date 2024-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-9312 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.6 Times cited Open Access  
  Notes Approved Most recent IF: 1.6; 2024 IF: 1.661  
  Call Number UA @ admin @ c:irua:206574 Serial 9288  
Permanent link to this record
 

 
Author Gao, C. url  doi
openurl 
  Title Exploring electron ptychography for low dose imaging Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xii, 146 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy is an important technique in the exploration of materials’ structures. This is especially true since the development of electron optical aberration correctors greatly facilitated atomic resolution imaging. We are currently experiencing an ongoing revolution in electron microscopy with the widespread adoption of direct electron detectors. Scientists have reported a lot of key scientific findings facilitated by direct electron detectors. One particular research domain is electron ptychography, which holds promise for unraveling the intricate structures of highly beam-sensitive materials like bio samples and achieving super-resolution without the limitation of aperture in the condenser lens system. Nevertheless, challenges persist both in experimental setups and algorithmic processes. Issues such as the comparatively sluggish scanning speed of cameras and contrast reversals of the reconstructed phase for relatively thick specimens, disrupting phase or weak phase approximations, remain noteworthy limitations. This thesis addresses these challenges by the event-driven Timepix3 detector, presenting a viable solution to the speed bottleneck. Moreover, innovative approaches for applying electron ptychography to relatively thick samples, employing a middle focusing strategy, are proposed. This research aims to push the boundaries of electron microscopy, offering solutions to existing limitations and advancing the field towards more efficient and accurate imaging techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206777 Serial 9289  
Permanent link to this record
 

 
Author Šoškić, B.N.; Bekaert, J.; Sevik, C.; Šljivančanin, Ž.; Milošević, M.V. pdf  doi
openurl 
  Title First-principles exploration of superconductivity in intercalated bilayer borophene phases Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064803-64811  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the emergence of phonon-mediated superconductivity in bilayer borophenes by controlled intercalation with elements from the groups of alkali, alkaline-earth, and transition metals, using systematic first-principles and Eliashberg calculations. We show that the superconducting properties are primarily governed by the interplay between the out-of-plane (????????) boron states and the partially occupied in-plane (????+????????,????) bonding states at the Fermi level. Our Eliashberg calculations indicate that intercalation with alkaline-earth-metal elements leads to the highest superconducting critical temperatures (????????). Specifically, Be in ????4, Mg in ????3, and Ca in the kagome bilayer borophene demonstrate superior performance with ???????? reaching up to 58 K. Our study therefore reveals that intercalated bilayer borophene phases are not only more resilient to chemical deterioration, but also harbor enhanced ???????? values compared to their monolayer counterparts, underscoring their substantial potential for the development of boron-based two-dimensional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001254 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206919 Serial 9290  
Permanent link to this record
 

 
Author Borah, R.; Raj A.G., K.; Verbruggen, S.W. pdf  doi
openurl 
  Title Flow-by membraneless electrolyzer designs : a macroporous flow dividing mesh enhances maximum allowable electrode length Type A1 Journal article
  Year 2024 Publication Fuel Abbreviated Journal  
  Volume 377 Issue Pages 132779-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract The membraneless electrolyzer design promises a low-cost and robust electrolyzer technology, eliminating the disadvantages associated with the membranes/diaphragms in conventional electrolyzers. Flow-by membraneless electrolyzers exploit the Segré–Silberberg effect, where the electrolyte flow between parallel face-to-face cathode and anode forbids the evolving hydrogen and oxygen bubbles to cross over to the other side, while still allowing ionic currents between the electrodes to pass. The removal of the membrane from traditional electrolyzers, and instead exploiting the electrolyte flow itself to function as a gas separator also imposes certain requirements, namely: 1) upward laminar flow and, 2) vertically aligned electrodes. Given the upper limit of the laminar flow regime (Reynolds number, Re ∼ 1800), the admissible length of both vertically aligned electrodes is constrained by the production volume of H2 and O2 at both electrodes. Beyond a certain production rate the evolving gas plume increases in thickness until it reaches the central line dividing the channel between the electrodes. From that point onwards, flow mediated separation of both gases becomes practically impossible. In this work the design constraints of membraneless electrolyzers are investigated by combined multiphysics modeling and mass-balance analysis. Next, a macroporous flow dividing mesh is introduced in the design that allows seamless ionic flow between the electrodes while facilitating a higher electrolyte velocity in the laminar regime. This in turn enables to increase the maximum electrode length (or height) by >50 %. The model based analysis provides important guidelines for further development of membraneless electrolyzers, significantly reducing future experimental optimization efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number UA @ admin @ c:irua:207729 Serial 9291  
Permanent link to this record
 

 
Author Pompei, E.; Vlamidis, Y.; Ferbel, L.; Zannier, V.; Rubini, S.; Arenas Esteban, D.; Bals, S.; Marinelli, C.; Pfusterschmied, G.; Leitgeb, M.; Schmid, U.; Heun, S.; Veronesi, S. url  doi
openurl 
  Title Functionalization of three-dimensional epitaxial graphene with metal nanoparticles Type A1 Journal article
  Year 2024 Publication Nanoscale Abbreviated Journal  
  Volume 16 Issue 34 Pages 16107-16118  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the first successful functionalization of epitaxial three-dimensional graphene with metal nanoparticles. The functionalization is obtained by immersing three-dimensional graphene in a nanoparticle colloidal solution. This method is versatile and demonstrated here for gold and palladium, but can be extended to other types of nanoparticles. We have measured the nanoparticle density on the top surface and in the porous layer volume by scanning electron microscopy and scanning transmission electron microscopy. The samples exhibit a wide coverage of nanoparticles with minimal clustering. We demonstrate that high-quality graphene promotes the functionalization, leading to higher nanoparticle density both on the surface and in the pores. X-ray photoelectron spectroscopy shows the absence of contamination after the functionalization process. Moreover, it confirms the thermal stability of the Au- and Pd-functionalized three-dimensional graphene up to 530 degrees C. Our approach opens new avenues for utilizing three-dimensional graphene as a versatile platform for catalytic applications, sensors, and energy storage and conversion. We report a new technique for fabricating metal-functionalized three-dimensional epitaxial graphene on porous SiC. The process is clean and scalable. The fabricated material exhibits high chemical and thermal stability, and versatility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001283 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access  
  Notes Approved Most recent IF: 6.7; 2024 IF: 7.367  
  Call Number UA @ admin @ c:irua:207655 Serial 9292  
Permanent link to this record
 

 
Author Chinnabathini, V.C. url  doi
openurl 
  Title Gas phase bimetallic nanoclusters-modified TiO2 supports as efficient photo(electro)catalysts for self-cleaning surfaces and water splitting Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xviii, 149 p.  
  Keywords Doctoral thesis; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract In the context of global challenges such as climate change and environmental pollution, photocatalysis evolved as one of the promising strategies for sustainable energy conversion and pollutant degradation. In this thesis, photocatalysis using gas phase deposited bimetallic nanoclusters (BNCs) on TiO2 supports is studied in the context of self-cleaning surfaces and photoelectrochemical (PEC) water splitting applications. Thanks to their plasmonic properties, BNCs made of coinage metals can serve as efficient cocatalysts for the degradation of organic pollutants and surface contaminants under light irradiation. They also hold great promise for PEC water splitting, a promising pathway for renewable hydrogen production, which can be used in hydrogen fuel cells or for the environmentally friendly production of fuels in, for example, CO2 hydrogenation processes. The small size and high surface-to-volume ratio of plasmonic BNCs play pivotal roles in influencing the efficiency and selectivity of photocatalytic processes. BNCs have unique optical, physical, chemical, and structural properties distinctly different from their bulk and monometallic counterparts. These properties can be fine-tuned at the single particle level by their size, composition, and atomic arrangement, but also by interaction with other particles through the coverage and through interaction with the support. To design better photocatalysts it is crucial to carefully understand the BNCs’ characteristic properties, especially at the atomic level where synergies between different elements are sought. To achieve this objective, BNCs with well-defined sizes and compositions are deposited on TiO2 supports and we studied their structural properties and their influence on the photocatalytic activity. The general procedure followed in this thesis is the production and deposition of BNCs on TiO2 by the cluster beam deposition (CBD) technique, followed by structural and optical characterization to understand their tailored properties, and photocatalytic testing either for photodecomposition of organic molecules or PEC water splitting. In a first study, AuxAg1-x (x = 1, 0.9, 0.7, 0.5, 0.3, and 0) alloy BNCs with different compositions are synthesized in the gas phase and deposited from a molecular beam on TiO2 P25 supports. The photocatalytic self-cleaning activity of as-prepared samples is tested under UV and visible light towards stearic acid (SA) degradation. SA is a widely accepted model contaminant, which represents the group of organic fouling compounds that typically contaminates glass surfaces. A composition-dependent activity is observed with the Au0.3Ag0.7 nanocluster modified TiO2 exhibiting the highest photoactivity. Scanning transmission electron microscopy (STEM) measurements reveal that, for a mass loading corresponding to an equivalent of 4 atomic monolayers (MLs), the BNCs are uniformly distributed over the surface. The clusters have an average size of 3.5 ± 0.5 nm and are crystalline in nature. The atomic structure is characterized by X-ray absorption fine structure (XAFS) spectroscopy and their electronic structure by X-ray photoelectron spectroscopy (XPS). These measurements demonstrate a charge redistribution between the Ag and Au atoms when alloyed at the nanoscale. The effect of this charge redistribution is likely the stabilization of Ag against oxidation and directly affects the catalytic properties of the clusters. It is suggested that the highest photoactivity of 4 ML loaded Au0.3Ag0.7 under solar light results from a combination of four main possible contributing factors: (i) injection in TiO2 of excited carriers that are generated by the localized surface plasmon resonance (LSPR) effect of the BNCs in the visible light wavelength range which overlaps with the sun’s irradiance spectrum. (ii) a strong near-field enhancement that increases the photoabsorption by the TiO2 for photons that have enough energy to overcome the high bandgap, (iii) the optimized total metal loading of 4 ML leaves enough of the TiO2 surface accessible for light absorption, and finally (iv) an effective charge distribution between Au and Ag. This study demonstrates that CBD is an efficient approach for fabricating well-defined, tunable AuAg plasmon-based photocatalysts for self-cleaning applications, outperforming their monometallic counterparts as well as bimetallic alternatives obtained through colloidal methods. In a second study, titania nanotubes (TNTs) are modified with a series of AuxCu1-x (x = 1, 0.75, 0.5, 0.25, and 0) BNCs using the CBD technique. Based on the results of the first study, we opted again for a loading of 4 ML. TNTs are known for their high surface area, fast charge transfer, and corrosion resistance, while keeping the inherent strengths of traditional TiO2 materials. They prove to be promising photoanodes, enhancing photocurrent in PEC applications for water oxidation. In this work the TNTs are grown via anodic oxidation of a titanium metal foil. The crystalline anatase phase of the grown TNTs is confirmed by the X-ray diffraction technique (XRD), while transmission electron microscopy (TEM) provides information about the size and composition of the deposited BNCs. XAFS provides further structural information, while XPS measurements reveal charge redistribution between Au and Cu, which can aid in the enhancement of the PEC activity. Oxidation of as-prepared electrodes over the time results in structural changes with CuxO at the outer shell functioning as a protective layer, while the majority of the core is an alloy. The optical properties, studied through UV-Vis spectroscopy confirm the extended absorption range of the cluster-modified TNTs towards the visible region. The charge carrier recombination rate is derived from photoluminescence (PL) measurements. The as-prepared electrodes are tested photoelectrochemically for the generation of an anodic photocurrent using simulated sunlight. It is found that the AuxCu1-x (x = 1, 0.75, 0.5, 0.25 and 0) BNC modified TNTs show a remarkable enhancement in the anodic photocurrent relative to pristine TNTs, with Au0.25Cu0.75 exhibiting the highest photocurrent. This is due to the combination of many possible factors. Firstly, the charge redistribution between Au and Cu and increase stability of the Au0.25Cu0.75 electrode as observed in XAFS, indicates that the electronic effect in the cluster is also one of the governing factors for PEC activity. Secondly, formation of a surface CuOx layer, protects against further corrosion of the metallic AuCu BNCs cores. Third, reduced recombination of charge carriers is indicated by lower photoluminescent (PL) intensity compared to pristine TNTs and all other electrodes except pure gold, as observed in PL spectra. This implies that the generated charge carriers are efficiently separated by Au0.25Cu0.75 NCs acting as electron sinks and easily available for redox reactions. Fourth, the highest interfacial charge transfer efficiency is evidenced by the electrochemical impedance spectroscopy (EIS), leading to more efficacious charge migration and separation, facilitating the water oxidation surface reaction. A final beneficial factor is the uniform deposition of well-defined, size- and composition-controlled, ligand-free BNCs. Such BNCs provide more effective surface sites to the reaction medium, in contrast to electrodes synthesized by e.g. sol-gel methods, where (in)organic residues on metal surfaces may decrease the efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206758 Serial 9293  
Permanent link to this record
 

 
Author Baral, P.; Kashiwar, A.; Coulombier, M.; Delannay, L.; Hoummada, K.; Raskin, J.P.; Idrissi, H.; Pardoen, T. pdf  doi
openurl 
  Title Grain boundary-mediated plasticity in aluminum films unraveled by a statistical approach combining nano-DIC and ACOM-TEM Type A1 Journal article
  Year 2024 Publication Acta materialia Abbreviated Journal  
  Volume 276 Issue Pages 120081-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanomechanical on-chip testing is combined with nanoscale in situ digital image correlation and automated crystal orientation mapping in TEM to deliver novel statistically representative quantitative data about the deformation mechanisms in nanocrystalline aluminum films. The films are very ductile, with a rare stable multiple necking process with local strains reaching up to 0.45 and macroscopic elongation up to 0.17. The strain fields with resolution below 100 nm are related to the underlying microstructure and crystallographic orientation maps. This reveals nanoscopic shear bands forming preferentially along GB with high misorientations, tilted at +/− 45° with respect to loading direction. The analysis of these data prove that the strong strain delocalization process is promoted by GB migration and grain rotation, leading to large strain rate sensitivity. The distribution of misorientation angles between grains evolve during deformation. The GBs with misorientation between 20° and 40°, which are the GBs with highest energy, involve the largest strains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001258 Publication Date 2024-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.4 Times cited Open Access  
  Notes Approved Most recent IF: 9.4; 2024 IF: 5.301  
  Call Number UA @ admin @ c:irua:206419 Serial 9294  
Permanent link to this record
 

 
Author Paramasivam, S.K.; Gangadharan, S.P.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title High-Tc Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconducting systems with coupled deep and quasiflat electronic bands with Van Hove singularities Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 2 Pages 024507-24511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the pursuit of higher critical temperature of superconductivity, quasiflat electronic bands and Van Hove singularities in two dimensions (2D) have emerged as a potential approach to enhance Cooper pairing on the basis of mean-field expectations. However, these special electronic features suppress the superfluid stiffness and, hence, the Berezinskii-Kosterlitz-Thouless (BKT) transition in 2D superconducting systems, leading to the emergence of a significant pseudogap regime due to superconducting fluctuations. In the strong-coupling regime, one finds that superfluid stiffness is inversely proportional to the superconducting gap, which is the predominant factor contributing to the strong suppression of superfluid stiffness. Here we reveal that the aforementioned limitation is avoided in a 2D superconducting electronic system with a quasiflat electronic band with a strong pairing strength coupled to a deep band with weak electronic pairing strength. Owing to the multiband effects, we demonstrate a screening-like mechanism that circumvents the suppression of the superfluid stiffness. We report the optimal conditions for achieving a large enhancement of the BKT transition temperature and a substantial shrinking of the pseudogap regime by tuning the intraband couplings and the pair-exchange coupling between the two band-condensates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:207014 Serial 9295  
Permanent link to this record
 

 
Author Song, Y.; Chen, M.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. pdf  doi
openurl 
  Title Hydrogenation-controlled band engineering of dumbbell graphene Type A1 Journal article
  Year 2024 Publication Nano energy Abbreviated Journal  
  Volume 127 Issue Pages 109763-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The stability of the dumbbell structure has been confirmed by previous theory and experiment. Based on firstprinciples calculations, we proposed hexagonal dumbbell graphene (HDB C10) and rectangular dumbbell graphene (RDB C10) monolayers containing periodically raised C (CR) atoms. They turn out to have high mobility semiconductor properties. By adsorbing H atoms on these CR atoms, their band structures can be widely tuned from semiconductor to semimetal. When considering adsorption of two/four H atoms on the unit cell of the dumbbell structure, the bandgap can be increased, and isolated flat band structures can be obtained by further adding or removing H atoms. Remarkably, two different Dirac band structures can be found in the HDB/RDB C10H2-I monolayers. The HDB C10H2-I shows a Dirac cone with isotropic Fermi velocities, while the RDB C10H2-I monolayer exhibits a quasi-one-dimensional Dirac nodal line with varying Fermi velocities along the XS path. Tight-binding (TB) models are constructed including nearest neighbor (NN) and next NN hopping in order to understand our DFT results. These TB models are related to the Su-Schrieffer-Heeger model, and are able to explain the tunable topological properties of the RDB C10H2-I monolayer. They not only are able to explain the different kinds of Fermi velocity, but also can predict the emergence of topological edge states, providing a good platform for research on Dirac fermions. The HDB/RDB C10 monolayer exhibits more freedom of tunable band structures and more stable hydrogen storage capacity, making it superior to graphene. Finally, possible experimental synthesis paths of these DB monolayers are provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001244362400001 Publication Date 2024-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.6 Times cited Open Access  
  Notes Approved Most recent IF: 17.6; 2024 IF: 12.343  
  Call Number UA @ admin @ c:irua:206621 Serial 9296  
Permanent link to this record
 

 
Author Folkers, B.; Jansen, T.; Roskamp, T.J.; Reith, P.; Timmermans, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Hilgenkamp, H.; Rosario, C.M.M. doi  openurl
  Title Imaging the suppression of ferromagnetism in LaMnO₃ by metallic overlayers Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 5 Pages 054408-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LaMnO 3 (LMO) thin films epitaxially grown on SrTiO 3 (STO) usually exhibit ferromagnetism above a critical layer thickness. We report the use of scanning SQUID microscopy (SSM) to study the suppression of the ferromagnetism in STO / LMO / metal structures. By partially covering the LMO surface with a metallic layer, both covered and uncovered LMO regions can be studied simultaneously. While Au does not significantly influence the ferromagnetic order of the underlying LMO film, a thin Ti layer induces a strong suppression of the ferromagnetism, over tens of nanometers, which increases with time on a timescale of days. Detailed electron energy loss spectroscopy analysis of the Ti-LaMnO 3 interface reveals the presence of Mn 2 + and an evolution of the Ti valence state from Ti 0 to Ti 4 + over approximately 5 nm. Furthermore, we demonstrate that by patterning Ti / Au overlayers, we can locally suppress the ferromagnetism and define ferromagnetic structures down to sub -micrometer scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001239765800005 Publication Date 2024-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206555 Serial 9297  
Permanent link to this record
 

 
Author Chen, X.; Dong, X.; Zhang, C.; Zhu, M.; Ahmed, E.; Krishnamurthy, G.; Rouzbahani, R.; Pobedinskas, P.; Gauquelin, N.; Jannis, D.; Kaur, K.; Hafez, A.M.E.; Thiel, F.; Bornemann, R.; Engelhard, C.; Schoenherr, H.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N. url  doi
openurl 
  Title Interlayer affected diamond electrochemistry Type A1 Journal article
  Year 2024 Publication Small methods Abbreviated Journal  
  Volume Issue Pages 2301774  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices. Diamond electrochemistry is revealed to be affected by the interlayers between boron/nitrogen co-doped nanocrystalline diamond (BNDD) film and a Si substrate. A BNDD/Ta/Ti/Si electrode exhibits faster electron transfer processes and smaller electron transfer resistance of redox probes for [Fe(CN)6]3-/4- and [Ru(NH3)6]3+/2+ than the other electrodes, because the interlayer thus determines the intrinsic activity and reaction kinetics of diamond films. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001247280600001 Publication Date 2024-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 12.4 Times cited Open Access  
  Notes Approved Most recent IF: 12.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206567 Serial 9298  
Permanent link to this record
 

 
Author Abadeen, A.Z.U.; Omranian, S.R.; Abdellati, Y.; Ag, K.R.; Verbruggen, S.; Vuye, C. pdf  doi
openurl 
  Title Investigating the potential effects of limestone and bitumen substrates on photocatalytic NOx degradation Type P1 Proceeding
  Year 2024 Publication Abbreviated Journal  
  Volume 1 Issue Pages 3-12 T2 - Proceedings of the 10th International Co  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Pavements and Asphalt Research (SuPAR); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract NOx emissions commonly emitted by vehicles, pose environmental and health challenges worldwide. Photocatalytic asphalt pavements, used in urban settings, are in close contact with these emissions. In this study, the contribution and role of asphalt mix components—stone and bitumen—were analyzed in the degradation process. The effectiveness of TiO2 coatings on limestone-bitumen composites of varying ratios (100%, 75%, 50%, 25%, and 0%) was assessed using X-ray diffraction analysis (XRD), Confocal Laser Scanning Microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR), and the modified ISO 22197-1:2016 standard for NO removal. XRD verified the presence of calcite in limestone. CLSM revealed surface modifications and coating morphology, FTIR verified successful TiO2 PF2 coating deposition and NOx degradation quantified the NOx degradation (%), NO degradation (%) and NO2 formation (%) during photocatalytic activity. It was evident that samples with a higher ratio of stone-to-bitumen exhibited an elevated NOx degradation, reaching up to 29.11% for NOx, 43.79% for NO, and 13.96% for NO2 formation. Conversely, samples with a lower stone-to-bitumen ratio recorded values as low as 8.93% for NOx degradation (%), 10.30% for NO degradation (%), and 0.95% for NO2 formation (%). These outcomes firmly establish the inhibitory effect of the bitumen substrate on NOx and NO degradation but a positive effect on NO2 formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-031-63587-8 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:207349 Serial 9299  
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M. pdf  doi
openurl 
  Title Key electronic parameters of 2H-stacking bilayer MoS₂ on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry Type A1 Journal article
  Year 2024 Publication Frontiers of physics Abbreviated Journal  
  Volume 19 Issue 6 Pages 63204-63209  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density n(e), the electronic relaxation time tau, the electronic localization factor c and, particularly, the effective electron mass m* around Q-point in between the K- and Gamma-point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure m* around the Q-point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that n(e)/tau/ divided by c divided by /m* in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001271 Publication Date 2024-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.5 Times cited Open Access  
  Notes Approved Most recent IF: 7.5; 2024 IF: 2.579  
  Call Number UA @ admin @ c:irua:207600 Serial 9300  
Permanent link to this record
 

 
Author Brasili, S.; Gielis, J. url  doi
openurl 
  Title Legacy and innovation across symmetry's dimensions Type L1 Letter to the editor
  Year 2024 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 35 Issue 1 Pages 005-006  
  Keywords L1 Letter to the editor; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001248266900001 Publication Date 2024-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206498 Serial 9301  
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Van Duppen, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Longitudinal and transverse mobilities of n-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 19 Pages 195418-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical investigation on the electronic transport properties of n-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr & ouml;dinger equation with a k <middle dot> p Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semiclassical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the K'-valley to one in the K-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. By taking the ML-MoS2 as an example, these effects are demonstrated and examined. The important and interesting theoretical findings can be beneficial to experimental observation of the valleytronic effect and to gaining an in-depth understanding of the ML-TMD systems in the presence of proximity-induced interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001237245700001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206596 Serial 9302  
Permanent link to this record
 

 
Author Janssens, K.; Van der Snickt, G. url  openurl
  Title De macroscopische X-straal fluorescentiescanner voor schilderijen Type H3 Book chapter
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages 36-37 T2 - Verhalenvertellers : academisch erfgoed  
  Keywords H3 Book chapter; Documentation and information; Engineering sciences. Technology; Art; History; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:208047 Serial 9303  
Permanent link to this record
 

 
Author Miao, X.; Milošević, M.; Zhang, C. pdf  doi
openurl 
  Title Magnetic ferroelectric metal in bilayer Fe₃GeTe₂ under interlayer sliding Type A1 Journal article
  Year 2024 Publication Physica: B : condensed matter Abbreviated Journal  
  Volume 694 Issue Pages 416427-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The inherent interlayer freedom in van der Waals stacked materials provides an excellent opportunity to investigate ferroelectric-like behavior through interlayer translation. Based on first-principles calculations, we find that the interlayer sliding in Fe3GeTe2 (FGT) bilayer enables the coexistence of polarization, metallicity, and ferromagnetism. We find that the polarization is induced by the uncompensated vertical interlayer charge transfer, and can be switched by an in-plane interlayer sliding. A moderate biaxial strain can reverse the polarization direction of the sliding FGT bilayer. The vertical polarization disentangles with the in-plane conductivity as was previously seen in the sliding ferroelectric WTe2 bilayer. Our work proposes an extremely rare magnetic ferroelectric metal phase that is useful for magnetoelectric and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001300 Publication Date 2024-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; 1873-2135 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.8 Times cited Open Access  
  Notes Approved Most recent IF: 2.8; 2024 IF: 1.386  
  Call Number UA @ admin @ c:irua:208567 Serial 9304  
Permanent link to this record
 

 
Author Li, Y.; Xiao, Y.M.; Xu, W.; Ding, L.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Magneto-optical conductivity of monolayer transition metal dichalcogenides in the presence of proximity-induced exchange interaction and external electrical field Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 16 Pages 165441-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the magneto-optical (MO) properties of monolayer (ML) transition metal dichalcogenides (TMDs) in the presence of external electrical and quantizing magnetic fields and of the proximity-induced exchange interaction. The corresponding Landau Level (LL) structure is studied by solving the Schr & ouml;dinger equation and the spin polarization in ML-TMDs under the action of the magnetic field is evaluated. The impact of trigonal warping on LLs and MO absorption is examined. Furthermore, the longitudinal MO conductivity is calculated through the dynamical dielectric function under the standard random-phase approximation (RPA) with the Kubo formula. We take ML-MoS 2 as an example to examine the effects of proximity-induced exchange interaction, external electrical and magnetic fields on the MO conductivity induced via intra- and interband electronic transitions among the LLs. For intraband electronic transitions within the conduction or valence bands, we can observe two absorption peaks in terahertz (THz) frequency range. While the interband electronic transitions between conduction and valence LLs show a series of absorption peaks in the visible range. We find that the proximity-induced exchange interaction, the carrier density, the strengths of the external electrical and magnetic fields can effectively modulate the positions of the absorption peaks and the shapes of the MO absorption spectra. The results obtained from this study can benefit to an in-depth understanding of the MO properties of ML-TMDs which can be potentially applied for magneto-optic, spintronic, and valleytronic devices working in visible to THz frequency bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001231884200004 Publication Date 2024-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206589 Serial 9305  
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L. doi  openurl
  Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 8 Pages 084407-84411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207592 Serial 9306  
Permanent link to this record
 

 
Author Ermiş, T.; Şen, A.O.; Gielis, J. url  doi
openurl 
  Title A new approach to circular inversion in l₁-normed spaces Type A1 Journal article
  Year 2024 Publication Symmetry Abbreviated Journal  
  Volume 16 Issue 7 Pages 874-879  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract While there are well-known synthetic methods in the literature for finding the image of a point under circular inversion in l2-normed geometry (Euclidean geometry), there is no similar synthetic method in Minkowski geometry, also known as the geometry of finite-dimensional Banach spaces. In this study, we have succeeded in creating a synthetic construction of the circular inversion in l1-normed spaces, which is one of the most fundamental examples of Minkowski geometry. Moreover, this synthetic construction has been given using the Euclidean circle, independently of the l1-norm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001278345600001 Publication Date 2024-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2024 IF: 1.457  
  Call Number UA @ admin @ c:irua:207314 Serial 9307  
Permanent link to this record
 

 
Author Tunca, S.; Parrilla, M.; Raj, K.; Nuyts, G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Nickel hydroxide nanosphere decorated reduced-TiO₂ nanotubes as supercapacitor electrodes Type A1 Journal article
  Year 2024 Publication Electrochimica acta Abbreviated Journal  
  Volume 505 Issue Pages 144990-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract A straightforward electrochemical method was developed to modify titanium dioxide nanotubes (TiO2 NTs), creating oxygen vacancies via electrochemical reduction (ER) and depositing nickel hydroxide nanospheres (Ni (OH)2 NSs). This was done to discover the electrochemical properties of a TiO2 NTs based binder-free supercapacitor electrode. The improved conductivity of the reduced TiO2 NTs (R-TiO2 NTs) electrode provided a 90fold increase in the specific capacitance compared to that of pristine TiO2 NTs. R-TiO2 NTs were further decorated with Ni(OH)2 NSs by an electrodeposition method to further improve the supercapacitive performance. Fabricated R-TiO2 NTs/Ni(OH)2 electrodes exhibited a high areal specific capacitance value of 305.91 mF/cm2 at a current density of 0.75 mA/cm2. The modified electrode shows an improved charge-storage capacity compared to the TiO2 NTs/Ni(OH)2 electrodes, and to previously reported 1D-TiO2/Ni(OH)2 nanocomposite structures. Furthermore, the proposed electrode showed good cyclic stability by retaining 71% of its initial capacitance after 1500 cycles and a promising rate capability with a capacitive retention of 86% while increasing the current density from 0.75 to 5 mA/cm2. Overall, the ER step proved to improve the conductivity of the R-TiO2 NTs, which favors the deposition of the Ni(OH)2 NSs and promotes the Faradaic reactions at the electrode-electrolyte interface demonstrating a promising supercapacitor electrode material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001309 Publication Date 2024-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.6 Times cited Open Access  
  Notes Approved Most recent IF: 6.6; 2024 IF: 4.798  
  Call Number UA @ admin @ c:irua:208529 Serial 9308  
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C. doi  openurl
  Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 7 Pages 075201-75210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207597 Serial 9309  
Permanent link to this record
 

 
Author Bacaksiz, C.; Fyta, M. url  doi
openurl 
  Title Phthalocyanine adsorbed on monolayer CrI₃ : tailoring their magnetic properties Type A1 Journal article
  Year 2024 Publication ACS Omega Abbreviated Journal  
  Volume 9 Issue 32 Pages 34589-34596  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207512 Serial 9310  
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M. pdf  doi
openurl 
  Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue Pages 2402163  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number UA @ admin @ c:irua:207624 Serial 9311  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Sorée, B.; Couet, S.; Temst, K.; Van Nguyen, D. url  doi
openurl 
  Title Progress in spin logic devices based on domain-wall motion Type A1 Journal article
  Year 2024 Publication Micromachines Abbreviated Journal  
  Volume 15 Issue 6 Pages 696-20  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001256 Publication Date 2024-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-666x ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:207054 Serial 9312  
Permanent link to this record
 

 
Author Ghosh, S.; Pradhan, B.; Bandyopadhyay, A.; Skvortsova, I.; Zhang, Y.; Sternemann, C.; Paulus, M.; Bals, S.; Hofkens, J.; Karki, K.J.; Materny, A. url  doi
openurl 
  Title Rashba-type band splitting effect in 2D (PEA)₂PbI₄ perovskites and its impact on exciton-phonon coupling Type A1 Journal article
  Year 2024 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 15 Issue 31 Pages 7970-7978  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2024 IF: 9.353  
  Call Number UA @ admin @ c:irua:207672 Serial 9313  
Permanent link to this record
 

 
Author Barich, H.; Voet, O.; Sleegers, N.; Schram, J.; Montiel, F.N.; Beltran, V.; Nuyts, G.; De Wael, K. pdf  doi
openurl 
  Title Selecting optimal carbon inks for fabricating high-performance screen-printed electrodes for diverse electroanalytical applications Type A1 Journal article
  Year 2024 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal  
  Volume 971 Issue Pages 118585-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Carbon-based screen-printed electrodes (SPEs) are extensively employed in electrochemistry due to their reproducibility, low-cost production, disposability and versatility. It is commonly accepted that batch to batch variations may occur due to variations in the ink formulation or the use of a different ink to print the electrodes. In this paper, three different commercial carbon-based inks (DuPont, Loctite and SunChemical) were used to manufacture SPEs, referred to respectively as Dup-SPE, Loc-SPE and Sun-SPE, using a semi-automated screen-printing technology. This study focuses on evaluating the quality, characteristics and electrochemical performance of the fabricated SPEs. Furthermore, the study aimed to investigate potential correlations between the ink composition and the nature of different target molecules, as well as their electroanalytical responses. Specifically, phenolic compounds and cocaine cutting agents are tested in alkaline conditions, while benzodiazepines and cephalosporine antibiotics are investigated in acidic media using square wave voltammetry (SWV). This aims to extract insights for the proper selection of inks and SPEs in both conditions. Additionally, a scan rate study of cephalosporine antibiotics using linear sweep voltammetry (LSV) is performed confirming the ion-exchange polymer layer on the electrode surface of Loc-SPE, which impact surface and electrochemical properties, leading to drawbacks in alkaline SWV sensing, but strategic benefits in reductive sensing resulting in an enhanced selective detection of specific targets. The insights on ink-specific influences on the surface and electrochemical properties of the SPEs obtained, may be useful for facilitating the electrode selection in diverse electrochemical applications, emphasizing the critical role of ink composition in achieving desired sensing capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record  
  Impact Factor 4.5 Times cited Open Access  
  Notes Approved Most recent IF: 4.5; 2024 IF: 3.012  
  Call Number UA @ admin @ c:irua:207447 Serial 9314  
Permanent link to this record
 

 
Author Kadu, A.; Lucka, F.; Batenburg, K.J. pdf  doi
openurl 
  Title Single-shot tomography of discrete dynamic objects Type A1 Journal article
  Year 2024 Publication IEEE transactions on computational imaging Abbreviated Journal  
  Volume 10 Issue Pages 941-952  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a novel method for the reconstruction of high-resolution temporal images in dynamic tomographic imaging, particularly for discrete objects with smooth boundaries that vary over time. Addressing the challenge of limited measurements per time point, we propose a technique that incorporates spatial and temporal information of the dynamic objects. Our method uses the explicit assumption of homogeneous attenuation values of discrete objects. We achieve this computationally through the application of the level-set method for image segmentation and the representation of motion via a sinusoidal basis. The result is a computationally efficient and easily optimizable variational framework that enables the reconstruction of high-quality 2D or 3D image sequences with a single projection per frame. Compared to variational regularization-based methods using similar image models, our approach demonstrates superior performance on both synthetic and pseudo-dynamic real X-ray tomography datasets. The implications of this research extend to improved visualization and analysis of dynamic processes in tomographic imaging, finding potential applications in diverse scientific and industrial domains. The supporting data and code are provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001256 Publication Date 2024-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2573-0436; 2333-9403 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 5.4 Times cited Open Access  
  Notes Approved Most recent IF: 5.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207017 Serial 9315  
Permanent link to this record
 

 
Author Thomen, D.M.N.; Sevik, C.; Milošević, M.V.; Teles, L.K.; Chaves, A. url  doi
openurl 
  Title Strain and stacking registry effects on the hyperbolicity of exciton polaritons in few-layer black phosphorus Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 24 Pages 245413-245419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze, from first -principles calculations, the excitonic properties of monolayer black phosphorus (BP) under strain, as well as of bilayer BP with different stacking registries, as a base platform for the observation and use of hyperbolic polaritons. In the unstrained case, our results confirm the in -plane hyperbolic behavior of polaritons coupled to the ground -state excitons in both mono- and bilayer systems, as observed in recent experiments. With strain, we reveal that the exciton-polariton hyperbolicity in monolayer BP is enhanced (reduced) by compressive (tensile) strain in the zig-zag direction of the crystal. In the bilayer case, different stacking registries are shown to exhibit hyperbolic exciton polaritons with different dispersion, while also peaking at different frequencies. This renders both mechanical stress and stacking registry control as practical tools for tuning physical properties of hyperbolic exciton polaritons in black phosphorus, which facilitates detection and further optoelectronic use of these quasiparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001247621000008 Publication Date 2024-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:206631 Serial 9316  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V. url  doi
openurl 
  Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064001-64009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001247462600001 Publication Date 2024-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206660 Serial 9317  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: