toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M. pdf  doi
openurl 
  Title Key electronic parameters of 2H-stacking bilayer MoS₂ on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry Type A1 Journal article
  Year (down) 2024 Publication Frontiers of physics Abbreviated Journal  
  Volume 19 Issue 6 Pages 63204-63209  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density n(e), the electronic relaxation time tau, the electronic localization factor c and, particularly, the effective electron mass m* around Q-point in between the K- and Gamma-point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure m* around the Q-point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that n(e)/tau/ divided by c divided by /m* in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001271 Publication Date 2024-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.5 Times cited Open Access  
  Notes Approved Most recent IF: 7.5; 2024 IF: 2.579  
  Call Number UA @ admin @ c:irua:207600 Serial 9300  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: