toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Vermeulen, B.B.; Sorée, B.; Couet, S.; Temst, K.; Van Nguyen, D. url  doi
openurl 
  Title Progress in spin logic devices based on domain-wall motion Type A1 Journal article
  Year (down) 2024 Publication Micromachines Abbreviated Journal  
  Volume 15 Issue 6 Pages 696-20  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001256 Publication Date 2024-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-666x ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:207054 Serial 9312  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: