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Abstract: While there are well-known synthetic methods in the literature for finding the image of
a point under circular inversion in l2-normed geometry (Euclidean geometry), there is no similar
synthetic method in Minkowski geometry, also known as the geometry of finite-dimensional Banach
spaces. In this study, we have succeeded in creating a synthetic construction of the circular inversion
in l1-normed spaces, which is one of the most fundamental examples of Minkowski geometry.
Moreover, this synthetic construction has been given using the Euclidean circle, independently of the
l1-norm.
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1. Introduction

The main geometrical methods in the sciences go back to ancient times and are based
on lines and circles. The ubiquitous contemporary use of Fourier methods in physics and
engineering is mathematically equivalent to the methods used by Ptolemy [1].

Euclidean geometry has mainly evolved into Riemannian geometry, with local Eu-
clidean geometry in tangent spaces [2]. Another extension is into Minkowski–Finsler
geometry, also referred to as Riemannian geometry without the quadratic restriction [3].
Just as Euclidean geometry in two dimensions is based on using the circle as the basic figure
for the isotropic determination of distances, Lamé curves (also referred to as supercircles
and superellipses) form the basis of the simplest definitive Minkowski–Finsler geometries.
Generalizing superellipses to any symmetry (Gielis transformations) extends the methods
that the natural sciences have to describe various natural anisotropies for different symme-
tries s (s = 0, 1, 2, 3, 4, 5, etc., or any real value), as observed in starfish or diatoms [4]. By
applying Gielis transformations to the most “natural” curves and surfaces of Euclidean
geometry, e.g., circles under closed curves and logarithmic spirals under non-closed curves
in two dimensions, one obtains many shapes observed in nature, biology, crystallography,
physics, and other fields [4,5].

Over the past decade, these curves and transformations have been used successfully
to model of a wide variety of natural shapes, from plant leaves and tree rings to starfish
and avian eggs [6]. Further applications of Finsler geometry involving superellipses or
Gielis curves in the natural sciences are found in forest ecology [7,8], seismic ray paths
in anisotropic media [9], and the spreading of wildfires [10]. This has inspired various
researchers to study inversions, using classical inversion over a circle (Figure 1) [11], or
with Lamé–Gielis curves as inversion circles [12,13].

Inversions are area-preserving transformations, whereby the area of a rectangle formed
by two distances from the center is equal to the area of the square on the radius of the circle
(see [14] for more details). This is very similar to the parabola, a machine for transforming
rectangles into squares with the same area. In Euclidean geometry, parabolas, ellipses, and
hyperbolas are related directly to the application of areas in Euclid’s Book II. Since the basic
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shapes of our simplest Minkowski–Finsler geometries are a one-step generalization of the
classic conic sections, it is of great interest to return to the methods used in ancient times.
While, in Euclidean geometry, the image of a point under circular inversion can be found
by a synthetic method, in another type of geometry that stands next to and is a relative of
Euclidean geometry (called Minkowki geometry), synthetic methods for circular inversion are
not well known.

Figure 1. Huernia flowers and how the outer edges of the corolla (blue) are obtained by the inversion
of the sepals (light blue) over the green circle k (see [11] for details).

The concept of Euclidean distance can be generalized to any linear space by the
introduction of a norm. In this sense, the geometry that reveals, with the help of norms,
infinite-dimensional Banach spaces is called Minkowski geometry (we refer the reader
to [15–17] for a wider treatment of this). This is often confused with spacetime geometry,
also called Minkowski geometry. Hermann Minkowski (1864–1909) was a pioneer in both
geometries, and the general structure of Minkowski space was introduced by Minkowski
while working on some problems in number theory [18]. However, considering that
Riemann mentioned the l4-norm in [19], it can be said that the first step towards Minkowski
geometry was taken by Riemann. A norm on a vector space V is a function ρ : V → R for
which the following hold for any α, β ∈ V, and λ ∈ R:

i. ρ(α) ≥ 0, ∀α ∈ V (positive definite, (ρ(α) = 0 i f f α =
−→
0 ) );

ii. ρ(λα) = |λ|ρ(α) (positive homogeneity);
iii. ρ(α + β) ≤ ρ(α) + ρ(β) (triangle inequality).
A normed space (V, ρ) is a set V with a norm ρ defined on V. The most important thing

that explains the relationship between normed spaces and metric spaces is the following
proposition:

Lemma 1. A normed linear space (V, ρ) is a metric space with the distance

dρ(α, β) := ρ(β − α).

Proof. The metric properties (non-negative and symmetry) of dρ are quite obvious from
the norm axioms. From the triangular inequality property of the norm,

ρ(α − γ) = ρ(α − β + β − γ) ≤ ρ(α − β) + ρ(β − γ)

for any α, β, or γ ∈ V.

Also, the most well-known examples of normed spaces are the lp-normed space and
α-normed space, whose definitions are given below.

Let
−→
X = (x1, . . . , xn) be a vector in the n-dimensional real vector space Rn. The

lp-norm is defined as
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∥∥∥−→X ∥∥∥
p

:=


(

n
∑

i=1
|xi|p

)1/p
, p ∈ [1, ∞)

max
1≤i≤n

|xi| , p → ∞

Also, the pair
(
Rn, ∥.∥p

)
is called the lp-normed or p-normed space. The α-norm is de-

fined by ∥∥∥−→X ∥∥∥
α

:= ∆ + (sec α − tan α)δ,

where ∆ = max{|x1|, . . . , |xn|}, δ =

[
n
∑

i=1
|xi|
]
− ∆, and α ∈

[
0,

π

2

)
. The pair (Rn, ∥.∥α) is

called the α-normed space (we refer the reader to [20–22] for a wider treatment).
In Figure 2a, the brown circle represents the unit circle according to the norm l2 and

the red circle represents the circle according to the norm lp as p → ∞, while the other blue
circles represent the circle according to various lp-norms. Similarly, in Figure 2b, the brown
circle represents the circle according to the norm α = 0 and the red circle represents the
circle according to the α-norm as α → ∞, while the other blue circles represent the circle
according to various α-norms. Also, Figure 2 shows that the unit balls are convex with a
non-empty interior and centrally symmetric sets according to the lp and α-norms. However,
norms that have unit balls that are centrically symmetric but not mirror symmetric can be
defined as follows (see Figure 3):

∥(x, y)∥2,∞ :=


∥(x, y)∥2 , x.y ≥ 0

∥(x, y)∥∞ , x.y < 0
and ∥(x, y)∥∞,1 :=


∥(x, y)∥∞ , x.y ≥ 0

∥(x, y)∥1 , x.y < 0
.

Figure 2. (a) Unit circles for varying p-norms, (b) unit circles for varying α-norms.

Figure 3. Unit circles in terms of the norms ∥(x, y)∥2,∞ and ∥(x, y)∥∞,1, respectively.

As a result, it is clear from the definition of a norm that the unit ball has the following
characteristics:

(i) The unit ball is a closed and bounded set;
(ii) The unit ball is centrally symmetric;
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(iii) The unit ball is convex.
Conversely, if B is a set satisfying the properties i, ii, and iii, then the function

ρB(P) := inf
{

λ ∈ R+ : P/λ ∈ B
}

is a norm on Rn, for which B is the unit ball.
It should be noted here that the convex distance function dρD (Q, P) induced by the

convex set D,which has a non-empty interior and is not necessarily centrally symmetric, is
defined via ρD(P) by

dρD (Q, P) := ρD(P − Q).

However, it is obvious that the convex distance function dρD has the properties

dρD (α, β) = dρC (α − γ, β − γ) (translation invariance)

and dρD (λα, λβ) = λdρD (α, β) (homogeneity) such that, for any vectors α, β, γ, and λ ∈ R,
the distance function dρD does not have to satisfy the symmetry property, which is one
of the axioms of metric space. The distance function dρD satisfies the symmetric axiom
if and only if D is centrally symmetric (see [16,17] for more details). Thus, ρD is a norm
and the distance function dρD is a metric on Rn. The pair (Rn, dρD ) is called Minkowski
geometry. Thanks to translation invariance and homogeneity, all points in any Minkowski
geometry (Rn, dρD ) have the same status, and all geometric objects are centered at the origin.
Furthermore, the open balls BdρD

(Y, r) =
{

X ∈ Rn : dρD (Y, X) = r, Y is any point in Rn}
are rescaled, translated versions of the unit ball Bdρ(O, 1) = {X ∈ Rn : dρ(O, X) = 1}. As a
result, the fact that the norms can be interpreted and understood entirely with the help
of the shapes of the unit balls shows that the structure of Minkowski geometry can be
completely determined by the unit ball, which is a centrally symmetrical convex body.

The idea of examining the invariance of concepts, including the concept of distance in
Euclidean geometry, in Minkowski geometry when the Euclidean norm is replaced by an
arbitrary Minkowski norm is quite interesting. However, this trade-off can cause even very
elementary and simple questions to be very difficult to answer, and an answer may not
even be found. One example is the following question: while in Euclidean geometry the
image of a point under circular inversion can be found by a synthetic method due to the
unit ball having perfect symmetry, can a synthetic method be constructed for a Minkowski
geometry whose unit ball is centrally symmetric but not perfect?

2. Literature Review and Motivation

Although the emergence of inversion is not known for certain in the literature, there are
some studies [12,23] that indicate that it was first introduced by Apollonius of Perga (225–
190 BC). The first systematic research on inversion began with Jakob Steiner (1796–1863),
who made many geometric discoveries using this transformation in the 1820s (see [12,23]
for details). Later, Mario Pieri [24] developed the subject axiomatically and systematically
in the early 1910s. In What is Mathematics? [14] by Richard Courant and Herbert Robbins,
a detailed description is given of inversion, including Peaucellier’s linkage, converting
circular into rectilinear motion using the theory of inversion.

When research on inversion is examined, it is seen that the main source is the fre-
quently cited book Inversion theory and conformal mapping, written by David E. Blair [25].
Additionally, Gerard A. Venema, in the 10th chapter of his book titled Fundamentals of
Geometry [26], has presented almost all the properties of circular inversion in a very simple
and understandable way. At present, except for the references [27–29], it is very difficult
to find documents in the literature containing significant results regarding inversion the-
ory in addition to the results in the essential studies mentioned above. In [27–29], José
Luis Ramírez and Gustavo N. Rubiano have introduced the concept of elliptical inversion,
which is the generalization of the circular (or spherical) inversion concept, and obtained
important results.
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In the studies mentioned so far, inversion has been limited to Euclidean geometry.
However, the finding of some important but not surprising results regarding inversion in
l1-, α-, and l∞-normed spaces, respectively, in references [30–32] is evidence that inversion
theory is also becoming popular in non-Euclidean geometries.

Especially in the normed spaces
(
Rn, ∥.∥p

)
and (Rn, ∥.∥α), an inversion in a circle

(or sphere) of radius r centered at the point O is a map of an arbitrary point X found by
inverting the length of the displacement vector and multiplying by r2. If X and Xp are
inverse points according to this circular inversion, then the circular inversion with respect
to the α- and p-norm are defined as follows, respectively:

X 7→ Xp = O + r2
−→
OX

∥X − O∥2
α

X 7→ Xp = O + r2
−→
OX

∥X − O∥2
p

(1)

In Euclidean geometry, it can be easily obtained from the definition of inversion that a
circular inversion will have the following properties:

i. The inverse of a circle (not through the center of inversion) is a circle;
ii. The inverse of a circle through the center of inversion is a line;
iii. The inverse of a line (not through the center of inversion) is a circle through the

center of inversion;
vi. A circle orthogonal to the circle of inversion is its own inverse;
v. A line through the center of inversion is its own inverse;
vi. angles are preserved under inversion.
However, it can be easily seen from the α- and p-circular inversion definitions given in

(1) that none of the above-defined properties, except for v, remain invariant in the normed
spaces

(
Rn, ∥.∥p

)
and (Rn, ∥.∥α) (see [31,33] for more details).

Although inversion is a subject that has been known about and studied for a long
time, it has been limited to Euclidean logic. It is particularly surprising that inversion
theory has hardly been studied within the framework of Minkowski geometry. As far as we
know, only references [34–36] can be given as examples of inversion studies in Minkowski
geometry. So, there is good motivation for researchers to investigate which geometric
features known in Euclidean geometry and related to inversion will remain invariant in
Minkowski geometry. In this sense, our main motivation will be to develop a synthetic
method to find the inverse of a point under circular inversion in Minkowski geometry.
In order to construct this synthetic method, which has not been given before in the literature,
in the next section we will take a short journey into circular inversion with the l1- and
l2-norms in Minkowski geometry.

3. A Visit to Circular Inversion in Minkowski Geometries (R2, l1) and (R2, l2)

Let us consider the circle C =
{

X ∈ R2 : d(O, X) = r
}

. The inverse of an arbitrary
point P, different from the center of symmetry of the circle O, with respect to the circle C is
the point Pp, such that

d(P, O)d
(

Pp, O
)
= r2. (2)

A circular inversion is sometimes referred to as a “reflection” relative to the circle. Obviously,
if the inverse of point P is point Pp, then the inverse of point Pp is point P. Moreover,
from Equation (2), it is clear that, except for the center of the inversion circle O, circular
inversion will map the points inside the inversion circle to points outside the circle, or the
points inside the circle to points outside. The points on the inversion circle C remain fixed
under circular inversion. It should be noted that the center of the inversion circle O cannot
be mapped to any point of the plane. However, points close to O are mapped to points
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far from O, and points far from O are mapped to points close to O. Thus, it would be
meaningful to make a mapping between point R∞ at infinity and point O under circular
inversion. Inversion mapping, which is one of the most important representatives of the
conformal functions that generally map circles or lines onto (the same or different) circles
or lines and preserves the angles between intersecting curves, is defined as follows (see [25]
for more details):

Definition 1. Let the circle C =
{

X ∈ R2 : d(O, X) = r
}

be given. The inversion, according the
circle C, is the mapping IC , defined as follows for all P ̸= O

Id
C : R2 ∪ {∞} −→ R2 ∪ {∞}

P −→ Id
C(P) = Pp

such that Id
C(P) = Pp is the point lying on the ray

−→
OP and d(P, O)d(Pp, O) = r2. Additionally,

Id
C(R∞) = O and Id

C(O) = R∞.

According to the above definition, in the plane equipped with the Manhattan norm l1
(which is given by ∥(x1, x2)∥1 := |x1|+ |x2|) and the Euclidean norm l2 (which is given by

∥(x1, x2)∥2 :=
(
|x1|2 + |x2|2

)1/2
), circular inversion is formally defined as (see [31,33,37,38]

for more details)

Id
C : R2 ∪ {∞} −→ R2 ∪ {∞}

P −→ Id
C(P) = Pp = O + r2

−→
OP

∥P − O∥2
p

for p = 1 and p = 2.
According to this definition, it is clear that finding the inverse of a point analytically

will lead to tedious operations. In this sense, the following simple synthetic method, which
is well known in the literature, has been proposed to find the inverse of a point according
to the Euclidean norm l2.

Simple Construction: To construct the inverse Pp of a point P outside the circle C (see
Figure 4):

Step 1: Draw the tangent lines from point P to inversion circle C;
Step 2: Label the point where the tangent lines touch circle C as T1 and T2;
Step 3: The point where line segment T1T2 intersects the ray

−→
OP is the inverse of P.

Figure 4. A standard construction for Euclidean circular inversion.

The inverse of a point in Euclidean geometry can be easily found by the above well-
known synthetic method since the unit ball has perfect symmetry. However, a synthetic
method for Minkowski geometry, in which the unit ball is centrally symmetric but does
not necessarily have perfect symmetry, is not available in the literature. In order to create
a synthetic method for circular inversion in Minkowski geometry, we will consider p-
and α-normed spaces, which are the most classical examples of Minkowski geometry.
If we manage to generate a synthetic method for Manhattan (or taxicab) geometry, which
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corresponds to the special case of p = 1 or α = π/2 in p- and α-normed spaces, we can
attempt to generalize this method to Minkowski geometry. Thus, the method we will give
for Manhattan geometry in the next section will illuminate our way forward in this difficult
journey regarding the synthetic method we want to give for Minkowski geometry. Here,
we should immediately point out that the effort to develop a synthetic method for circular
inversion in Minkowski geometry is a motivation for our future work. In this study, we
will be content with only the norm l1.

4. Main Result
4.1. Notation and Preliminary

We will denote the metric induced by the l1-norm as dT , which is called the taxicab or
Manhattan metric, and formulate it as dT(P1, P2) =

∥∥∥−−→P1P2

∥∥∥
1
. Similarly, the metric induced

by the l2-norm is formulated as dE(P1, P2) =
∥∥∥−−→P1P2

∥∥∥
2
. The similarity of triangles will be

denoted by “∼”. Also, from the definition of the metric dT , the following proposition is
quite clear (see [39] for more details).

Lemma 2. Let L be a line through the points P1 and P2 in the analytical plane. If L has slope m,
and is not a vertical line,

dE(P1, P2) =

(√
1 + m2

1 + |m|

)
dT(P1, P2).

If L is a vertical line, then dE(P1, P2) = dT(P1, P2).

4.2. Synthetic Construction of Circular Inversion in l1-Normed Space

Let CT be an l1−normed circle with the radius rT and center O.
If P is an exterior point to CT , then the point Q, which is the intersection of the circle

CT by the ray
−→
OP is determined. Afterward, an Euclidean circle C is constructed with the

radius dE(O, Q) and centered at the point O. Let the points where the tangent lines drawn
from the point P to the Euclidean circle touch the Euclidean circle be labeled T1 and T2.
Thus, the point P′ where the line segment T1T2 intersects the ray

−→
OP is the inverse of the

desired point P (see Figure 5).
Indeed, it is simply observed that △OPT1 ∼ △OT1P′, hence

dE(O, P)
dE(O, T1)

=
dE(O, T1)

dE(O, P′)
.

Therefore,
dE(O, P)dE

(
O, P′) = (dE(O, T1))

2 = (dE(O, Q))2.

Using the relation given in Lemma 2, which allows conversion between the Euclidean
metric dE and the taxicab metric dT , we obtain that(√

1 + m2

1 + |m|

)
dT(O, P) ·

(√
1 + m2

1 + |m|

)
dT
(
O, P′) = ((√

1 + m2

1 + |m|

)
dT(O, Q)

)2

.

By making simplifications to the above equation, we find that

dT(O, P)dT
(
O, P′) = (dT(O, Q))2 = (rT)

2.

If point P is taken outside the circle, only the roles of points P and P′ will change. Therefore,
the synthetic construction is the same.
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Figure 5. A new construction for circular inversion in terms of the l1-norm.

Theorem 1 (Main Theorem). Let CT be a l1-normed circle with the radius rT and center O in the
Minkowski plane (R2, l1). Then, the image of a point P under inversion with respect to CT is

Pp =
−→
OP ∩ T1T2,

where T1 and T2 are the points made by the tangents drawn from point P to a Euclidean circle with
radius r = dE(O, Q), such that Q = CT ∩−→

OP and the center at O touch the Euclidean circle.

5. Conclusions

Open problem: In Minkowski geometry with an l2-norm (Euclidean geometry),
the image of a point under circular inversion can be found by a synthetic method. Similarly,
can a synthetic method be constructed to find the image of a point under circular inversion
in Minkowski geometry (geometry that emerges through norms in a finite-dimensional
Banach space)?

The fact that circles corresponding to the norm in Minkowski geometry are centrally
symmetric but do not always have mirror symmetry makes this question quite difficult.
In this work, we have succeeded in providing a synthetic method for circular inversion in
l1-normed spaces. Based on the method given here, we will try to generalize this method
to Minkowski geometry, regardless of the norm, in our future work.
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22. Gelişgen, Ö.; Kaya, R. On αi-distance in n-dimensional space. Appl. Sci. 2008, 1, 88–93.
23. Kozai, K.; Libeskind, S. Circle Inversions and Applications to Euclidean Geometry. Lecturer Notes. 2009. Available online:

http://jwilson.coe.uga.edu/MATH7200/InversionCompanion/inversion/inversionSupplement.pdf (accessed on 1 June 2024 ).
24. Pieri, M. Nuovi principia di geometria della inversion. Giornal Mat. Battagl. 1911, 49, 49–96.
25. Blair, D.E. Inversion Theory and Conformal Mapping; American Mathematical Society: Providence, RI, USA, 2000.
26. Venema, G.A. The Foundations of Geometry, 2nd ed.; Pearson Education: Boston, MA, USA, 2012.
27. Ramírez, J.L.; Rubiano, G.N. Elliptic inversion of two-dimensional objects. Int. J. Geom. 2014, 3, 12–27.
28. Ramírez, J.L.; Rubiano, G.N. A geometrical construction of inverse points with respect to an ellipse. Int. J. Math. Educ. Sci. Technol.

2014, 4, 1254–1259. [CrossRef]
29. Ramírez, J.L.; Rubiano, G.N. A generalization of the spherical inversion. Int. J. Math. Educ. Sci. Technol. 2017, 48, 132–149.

[CrossRef]
30. Sezgin, N. Öklidyen Düzlemde ve Taksi Düzlemde Evritim Üzerine. Master’s Thesis, Eskişehir Osmangazi University, Eskişehir,
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31. Gelişgen, Ö.; Ermiş, T. Some properties of inversions in alpha plane. Forum Geom. 2019, 19, 1–9.
32. Can, Z.; Yüca, G. On the circular inversion in maximum plane. Ikonion J. Math. 2020, 2, 26–34.
33. Rubiano, G.N. Circle Inversion [A Modern Visual Perspective], e-Book. 2022. Available online: https://www.researchgate.net/

profile/Gustavo-Rubiano/research (accessed on 1 June 2024).
34. Spirova, M. On Miquel’s theorem and inversions in normed planes. Monatshefte Math. 2010, 161, 335–345. [CrossRef]
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