|
Abstract |
While there are well-known synthetic methods in the literature for finding the image of a point under circular inversion in l2-normed geometry (Euclidean geometry), there is no similar synthetic method in Minkowski geometry, also known as the geometry of finite-dimensional Banach spaces. In this study, we have succeeded in creating a synthetic construction of the circular inversion in l1-normed spaces, which is one of the most fundamental examples of Minkowski geometry. Moreover, this synthetic construction has been given using the Euclidean circle, independently of the l1-norm. |
|