toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Chen, X.; Dong, X.; Zhang, C.; Zhu, M.; Ahmed, E.; Krishnamurthy, G.; Rouzbahani, R.; Pobedinskas, P.; Gauquelin, N.; Jannis, D.; Kaur, K.; Hafez, A.M.E.; Thiel, F.; Bornemann, R.; Engelhard, C.; Schoenherr, H.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N. url  doi
openurl 
  Title Interlayer affected diamond electrochemistry Type A1 Journal article
  Year (down) 2024 Publication Small methods Abbreviated Journal  
  Volume Issue Pages 2301774  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices. Diamond electrochemistry is revealed to be affected by the interlayers between boron/nitrogen co-doped nanocrystalline diamond (BNDD) film and a Si substrate. A BNDD/Ta/Ti/Si electrode exhibits faster electron transfer processes and smaller electron transfer resistance of redox probes for [Fe(CN)6]3-/4- and [Ru(NH3)6]3+/2+ than the other electrodes, because the interlayer thus determines the intrinsic activity and reaction kinetics of diamond films. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001247 Publication Date 2024-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record  
  Impact Factor 12.4 Times cited Open Access  
  Notes Approved Most recent IF: 12.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206567 Serial 9298  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: