|
Abstract |
Transmission electron microscopy is an important technique in the exploration of materials’ structures. This is especially true since the development of electron optical aberration correctors greatly facilitated atomic resolution imaging. We are currently experiencing an ongoing revolution in electron microscopy with the widespread adoption of direct electron detectors. Scientists have reported a lot of key scientific findings facilitated by direct electron detectors. One particular research domain is electron ptychography, which holds promise for unraveling the intricate structures of highly beam-sensitive materials like bio samples and achieving super-resolution without the limitation of aperture in the condenser lens system. Nevertheless, challenges persist both in experimental setups and algorithmic processes. Issues such as the comparatively sluggish scanning speed of cameras and contrast reversals of the reconstructed phase for relatively thick specimens, disrupting phase or weak phase approximations, remain noteworthy limitations. This thesis addresses these challenges by the event-driven Timepix3 detector, presenting a viable solution to the speed bottleneck. Moreover, innovative approaches for applying electron ptychography to relatively thick samples, employing a middle focusing strategy, are proposed. This research aims to push the boundaries of electron microscopy, offering solutions to existing limitations and advancing the field towards more efficient and accurate imaging techniques. |
|