toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. pdf  url
doi  openurl
  Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 463 Issue Pages 142442  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953890500001 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes (up) This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes (up) This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A. pdf  url
doi  openurl
  Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
  Year 2020 Publication Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 40 Issue 5 Pages 1163-1187  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543012200001 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access  
  Notes (up) This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409  
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. url  doi
openurl 
  Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 20 Pages 23112-23122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445220500071 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 36 Open Access OpenAccess  
  Notes (up) This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Calvaresi, M.; Bals, S.; Kooi, B.; Van Tendeloo, G.; Rudolf, P.; Zerbetto, F.; Prato, M. doi  openurl
  Title A simple road for the transformation of few-layer graphene into MWNTs Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 32 Pages 13310-13315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the direct formation of multiwalled carbon nanotubes (MWNT) by ultrasonication of graphite in dimethylformamide (DMF) upon addition of ferrocene aldehyde (Fc-CHO). The tubular structures appear exclusively at the edges of graphene layers and contain Fe clusters. Pc in conjunction with benzyl aldehyde, or other Fc derivatives, does not induce formation of NT. Higher amounts of Fc-CHO added to the dispersion do not increase significantly MWNT formation. Increasing the temperature reduces the amount of formation of MWNTs and shows the key role of ultrasound-induced cavitation energy. It is concluded that Fc-CHO first reduces the concentration of radical reactive species that slice graphene into small moieties, localizes itself at the edges of graphene, templates the rolling up of a sheet to form a nanoscroll, where it remains trapped, and finally accepts and donates unpaired electron to the graphene edges and converts the less stable scroll into a MWNT. This new methodology matches the long held notion that CNTs are rolled up graphene layers. The proposed mechanism is general and will lead to control the production of carbon nanostructures by simple ultrasonication treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000307487200034 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 56 Open Access  
  Notes (up) This work was supported by the University of Trieste, the Italian Ministry of Education MIUR (cofin Prot. 20085M27SS), the European Union through the ERC grant No. 246791 – COUNTATOMS, the grant agreement for an Integrated Infrastructure Initiative N. 262348 ESMI, and the “Graphene-based electronics” research program of the Foundation for Fundamental Research on Matter (FOM). Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:101109 Serial 3003  
Permanent link to this record
 

 
Author Payne, L.M.; Masia, F.; Zilli, A.; Albrecht, W.; Borri, P.; Langbein, W. url  doi
openurl 
  Title Quantitative morphometric analysis of single gold nanoparticles by optical extinction microscopy: Material permittivity and surface damping effects Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 154 Issue 4 Pages 044702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000630495600001 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited Open Access OpenAccess  
  Notes (up) This work was supported by the Welsh Government Life Sciences Bridging Fund (Grant No. LSBF/R6-005), the UK EPSRC (Grant Nos. EP/I005072/1 and EP/M028313/1), and the European Commission (Grant No. EUSMI E191000350). P.B. acknowledges the Royal Society for her Wolfson research merit award (Grant No. WM140077). F.M. acknowledges the Ser Cymru II programme (Case ID 80762-CU-148) which is part-funded by Cardiff University and the European Regional Development Fund through the Welsh Government. W.A. acknowledges an Individual Fellowship from the Marie Skłodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant No. 797153, SOPMEN) and Sara Bals for supporting the STEM measurements. The brightfield TEM was performed by Thomas Davies at Cardiff University. We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 2.965  
  Call Number EMAT @ emat @c:irua:177566 Serial 6748  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S. pdf  url
doi  openurl
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 15 Pages 4122-4130  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430538000036 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess  
  Notes (up) This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256  
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes (up) U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes (up) U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. pdf  url
doi  openurl
  Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal article
  Year 2024 Publication Chemical engineering science Abbreviated Journal Chemical Engineering Science  
  Volume 283 Issue Pages 119449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105312500001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes (up) Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. pdf  url
doi  openurl
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal article
  Year 2024 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 001174840900001 Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes (up) Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:204354 Serial 8997  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes (up) Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes (up) Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 7 Pages 2863-2873  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526394000016 Publication Date 2020-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess  
  Notes (up) Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:168819 Serial 6363  
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 47 Pages 25859-25872  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595545800023 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021  
  Notes (up) Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443  
Permanent link to this record
 

 
Author Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 2 Pages 401-406  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508473400008 Publication Date 2020-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes (up) Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442  
Permanent link to this record
 

 
Author Maerivoet, S.; Wanten, B.; De Meyer, R.; Van Hove, M.; Van Alphen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of O2on Plasma-Based Dry Reforming of Methane: Revealing the Optimal Gas Composition via Experiments and Modeling of an Atmospheric Pressure Glow Discharge Type A1 Journal Article
  Year 2024 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 12 Issue 30 Pages 11419-11434  
  Keywords A1 Journal Article; plasma-based conversion, thermal plasma, syngas production, CO2 conversion, CH4 conversio; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma technology is gaining increasing interest for the conversion of greenhouse gases, such as CO2 and CH4, into value-added chemicals using (renewable) electricity. In this paper, we study the effect of O2 addition to the combined conversion of CO2 and CH4 in an atmospheric pressure glow discharge plasma. This process is called “oxidative CO2 reforming of methane”, and we search for the optimal gas mixing ratio in terms of conversion, energy cost, product output and plasma stability. A mixing ratio of 42.5:42.5:15 CO2/CH4/O2 yields the best performance, with a CO2 and CH4 conversion of 50 and 74%, respectively, and an energy cost as low as 2 eV molecule−1 (corresponding to 7.9 kJ L−1 and 190 kJ mol−1), i.e., clearly below the target defined to be competitive with other technologies. The syngas components (CO and H2) are the most important products, with a syngas ratio, H2/CO, being 0.8. Plasma destabilization at high CH4 fractions due to solid carbon formation is the limiting factor for further improving this syngas ratio. The solid carbon material is found to be contaminated with steel particles originating from the electrode material, rendering it unappealing as a side product. Therefore, O2 addition helps to remove the carbon formation. Besides the experiments, we developed a 2D axisymmetric fluid dynamics model, which can successfully predict the experimental trends in conversion, product composition and temperatures, while providing unique insights in the formation of CxHy species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access  
  Notes (up) Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 40007511 G0I1822N ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:207488 Serial 9257  
Permanent link to this record
 

 
Author Loenders, B.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 5 Pages 2966-2983  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract We use microkinetic modeling to examine the potential of plasma-catalytic partial oxidation (POX) of CH4 as a promising new approach to produce oxygenates. We study how different plasma species affect POX of CH4 on the Pt(111) surface, and we discuss the associated kinetic and mechanistic changes. We discuss the effect of vibrationally excited CH4 and O2, as well as plasma-generated radicals and stable intermediates. Our results show that vibrational excitation enhances the turnover frequency (TOF) of catalytic CH4 dissociation and has good potential for improving the selectivities toward CH3OH, HCOOH, and C2 hydrocarbons. Nevertheless, when also considering plasma-generated radicals, we find that these species mainly govern the surface chemistry. Additionally, we find that plasma-generated radicals and stable intermediates enhance the TOFs of COx and oxygenates, increase the selectivity toward oxygenates, and make the formation of HCOOH more significant on Pt(111). We also briefly illustrate the potential impact of Eley−Rideal reactions that involve plasma-generated radicals. Finally, we reveal how various radicals affect the catalyst surface chemistry and we link this to the formation of different products. This allows us to make suggestions on how the plasma composition should be altered to improve the formation of desired products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000619760700017 Publication Date 2021-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes (up) Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; We thank Tom Butterworth for the interesting discussions regarding the calculation of the vibrational populations of methane and for taking the time to share his thoughts and experiences on the matter. This research is supported by the FWO-SBO project PLASMACATDesign (grant number S001619N). We also acknowledge financial support from the TOP-BOF project of the University of Antwerp and from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:175873 Serial 6672  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Samyn, N.; Bijvoets, S.M.; Heerschop, M.W.J.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 19 Pages 13485-13492  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Herein, a straightforward electrochemical approach for the determination of ketamine in street samples and seizures is presented by employing screen-printed electrodes (SPE). Square wave voltammetry (SWV) is used to study the electrochemical behavior of the illicit drug, thus profiling the different oxidation states of the substance at different pHs. Besides, the oxidation pathway of ketamine on SPE is investigated for the first time with liquid chromatography–high-resolution mass spectrometry. Under the optimized conditions, the calibration curve of ketamine at buffer solution (pH 12) exhibits a sensitivity of 8.2 μA μM–1, a linear relationship between 50 and 2500 μM with excellent reproducibility (RSD = 2.2%, at 500 μM, n = 7), and a limit of detection (LOD) of 11.7 μM. Subsequently, binary mixtures of ketamine with adulterants and illicit drugs are analyzed with SWV to investigate the electrochemical fingerprint. Moreover, the profile overlapping between different substances is addressed by the introduction of an electrode pretreatment and the integration of a tailor-made script for data treatment. Finally, the approach is tested on street samples from forensic seizures. Overall, this system allows for the on-site identification of ketamine by law enforcement agents in an easy-to-use and rapid manner on cargos and seizures, thereby disrupting the distribution channel and avoiding the illicit drug reaching the end-user.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580426800091 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes (up) Universiteit Antwerpen; H2020 Societal Challenges, 833787 ; Fonds Wetenschappelijk Onderzoek, 1S3765817N 1SB8120N ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number AXES @ axes @c:irua:170523 Serial 6435  
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
  Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 25 Issue 24 Pages 10485-10497  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110100100001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.8 Times cited Open Access  
  Notes (up) Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved Most recent IF: 9.8; 2023 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978  
Permanent link to this record
 

 
Author Heijkers, S.; Aghaei, M.; Bogaerts, A. url  doi
openurl 
  Title Plasma-Based CH4Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 13 Pages 7016-7030  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma is gaining interest for CH4 conversion into higher hydrocarbons and H2. However, the performance in terms of conversion and selectivity toward different hydrocarbons is different for different plasma types, and the underlying mechanisms are not yet fully understood. Therefore, we study here these mechanisms in different plasma sources, by means of a chemical kinetics model. The model is first validated by comparing the calculated conversions and hydrocarbon/H2 selectivities with experimental results in these different plasma types and over a wide range of specific energy input (SEI) values. Our model predicts that vibrational−translational nonequilibrium is negligible in all CH4 plasmas investigated, and instead, thermal conversion is important. Higher gas temperatures also lead to a more selective production of unsaturated hydrocarbons (mainly C2H2) due to neutral dissociation of CH4 and subsequent dehydrogenation processes, while three-body recombination reactions into saturated hydrocarbons (mainly C2H6, but also higher hydrocarbons) are dominant in low temperature plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526328500007 Publication Date 2020-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes (up) Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; We acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant No. G.0383.16N), the Methusalem Grant, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 − SCOPE ERC Synergy project). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:168096 Serial 6358  
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. url  doi
openurl 
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 9 Pages 3339-3344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535177500024 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access OpenAccess  
  Notes (up) Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:173994 Serial 6657  
Permanent link to this record
 

 
Author Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A. pdf  url
doi  openurl
  Title Energy‐Efficient Small‐Scale Ammonia Synthesis Process with Plasma‐enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx Type A1 Journal article
  Year 2022 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000772893400001 Publication Date 2022-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes (up) Vlaamse regering, HBC.2019.0108 ; Vlaamse regering; KU Leuven, C3/20/067 ; We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). J.A.M. © 2022 Wiley-VCH GmbH Approved Most recent IF: 8.4  
  Call Number PLASMANT @ plasmant @c:irua:187251 Serial 7054  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes (up) W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author van der Stam, W.; Gradmann, S.; Altantzis, T.; Ke, X.; Baldus, M.; Bals, S.; de Mello Donega, C. pdf  url
doi  openurl
  Title Shape Control of Colloidal Cu2-x S Polyhedral Nanocrystals by Tuning the Nucleation Rates Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 6705-6715  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions.  
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000384399000037 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 27 Open Access OpenAccess  
  Notes (up) W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. M.B. also gratefully acknowledges NWO for funding the NMR infrastructure (Middle Groot program, grant number 700.58.102). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:135928 Serial 4285  
Permanent link to this record
 

 
Author Bae, J.; Cichocka, M.O.; Zhang, Y.; Bacsik, Z.; Bals, S.; Zou, X.; Willhammar, T.; Hong, S.B. pdf  url
doi  openurl
  Title Phase transformation behavior of a two-dimensional zeolite Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 58 Issue 30 Pages 10230-10235  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476452700030 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes (up) We acknowledge financial support from National Creative Research Initiative Program (2012R1A3A-2048833) through the National Research Foundation of Korea, the National Research Council of Science & Technology (CRC-14-1-KRICT) grant by the Korea government (MSIP), the Swedish Research Council (2017-04321), and the Knut and Alice Wallenberg Foundation (KAW) through the project grant 3DEM-NATUR (2012.0112). T.W. acknowledges an international postdoc grant from the Swedish Research Council (2014-06948). Approved no  
  Call Number UA @ admin @ c:irua:181233 Serial 6878  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 348 Issue Pages 557-568  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434467000055 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020  
  Notes (up) We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 86 Issue Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes (up) We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 334 Issue Pages 2467-2479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418533400246 Publication Date 2017-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020  
  Notes (up) We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800  
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 20542-20549  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.  
  Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381428600058 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 34 Open Access  
  Notes (up) We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123  
  Call Number c:irua:135091 Serial 4112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: