|
Record |
Links |
|
Author |
Bal, K.M.; Bogaerts, A.; Neyts, E.C. |
|
|
Title |
Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Physical Chemistry Letters |
Abbreviated Journal |
J Phys Chem Lett |
|
|
Volume |
11 |
Issue |
2 |
Pages |
401-406 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000508473400008 |
Publication Date |
2020-01-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1948-7185 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.7 |
Times cited |
|
Open Access |
|
|
|
Notes |
Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. |
Approved |
Most recent IF: 5.7; 2020 IF: 9.353 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:165587 |
Serial |
5442 |
|
Permanent link to this record |