|
Record |
Links |
|
Author |
Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A. |
|
|
Title |
Avoiding solid carbon deposition in plasma-based dry reforming of methane |
Type |
A1 Journal Article |
|
Year |
2023 |
Publication |
Green Chemistry |
Abbreviated Journal |
Green Chem. |
|
|
Volume |
25 |
Issue |
24 |
Pages |
10485-10497 |
|
|
Keywords |
A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ; |
|
|
Abstract |
Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001110100100001 |
Publication Date |
2023-11-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1463-9262 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
9.8 |
Times cited |
|
Open Access |
|
|
|
Notes |
Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; |
Approved |
Most recent IF: 9.8; 2023 IF: 9.125 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:202138 |
Serial |
8978 |
|
Permanent link to this record |