|
Record |
Links |
|
Author |
Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A. |
|
|
Title |
H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Plasma Chemistry And Plasma Processing |
Abbreviated Journal |
Plasma Chem Plasma P |
|
|
Volume |
40 |
Issue |
5 |
Pages |
1163-1187 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000543012200001 |
Publication Date |
2020-06-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0272-4324 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.6 |
Times cited |
|
Open Access |
|
|
|
Notes |
This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. |
Approved |
Most recent IF: 3.6; 2020 IF: 2.355 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:172490 |
Serial |
6409 |
|
Permanent link to this record |