|
Record |
Links |
|
Author |
Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. |
|
|
Title |
Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Physical Chemistry Letters |
Abbreviated Journal |
J Phys Chem Lett |
|
|
Volume |
11 |
Issue |
9 |
Pages |
3339-3344 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000535177500024 |
Publication Date |
2020-05-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1948-7185 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.7 |
Times cited |
24 |
Open Access |
OpenAccess |
|
|
Notes |
Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma |
Approved |
Most recent IF: 5.7; 2020 IF: 9.353 |
|
|
Call Number |
EMAT @ emat @c:irua:173994 |
Serial |
6657 |
|
Permanent link to this record |