toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241  
Permanent link to this record
 

 
Author Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A. pdf  url
doi  openurl
  Title NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 10 Pages 4289-4298  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The current global energy crisis indicated that increasing our

insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer

production is more crucial than ever. Nonequilibrium plasma is a good candidate

because it can use N2 or air as a N source and water directly as a H source, instead

of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation

pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%

relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform

infrared spectroscopy. We demonstrate that the nitrogen fixation

capacity is increased when water vapor is added, as this enables HNO2 and NH3

production in both N2 and air. However, we identified a significant loss

mechanism for NH3 and HNO2 that occurs in systems where these species are

synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes

into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not

properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal

of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is

beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3

with NH3, which is of direct interest for fertilizer application.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953337700001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195878 Serial 7254  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Blondiaux, E.; Bomon, J.; Smolen, M.; Kaval, N.; Lemière, F.; Sergeyev, S.; Diels, L.; Sels, B.; Maes, B.U.W. url  doi
openurl 
  Title Bio-based aromatic amines from lignin-derived monomers Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 7 Issue 7 Pages 6906-6916  
  Keywords A1 Journal article; Engineering sciences. Technology; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new approach to synthesize valuable 3,4-dialkoxyanilines and alkyl propionates from lignin-derived 4-propylguaiacol and -catechol with overall isolated yields up to 65% has been described. The strategy is based on the introduction of nitrogen via a Beckmann rearrangement. Amino introduction therefore coincides with a C-defunctionalization reaction; overall a replacement of the propyl chain by an amino group is obtained. The process only requires cheap bulk chemicals as reagents/reactants and does not involve column chromatography to purify the reaction products. Furthermore, all carbon atoms from the biorenewable lignin-derived monomers are transformed into valuable compounds. Greenness was assessed by performing a Green Metrics analysis on two dialkoxyanilines. A comparison was made with literature routes for these compounds starting from a petrochemical substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463462100050 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159378 Serial 7556  
Permanent link to this record
 

 
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R. pdf  doi
openurl 
  Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
  Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 12 Issue 13 Pages 5211-5219  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001186347900001 Publication Date 2024-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number UA @ admin @ c:irua:204774 Serial 9146  
Permanent link to this record
 

 
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.; url  doi
openurl 
  Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 041520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353828400027 Publication Date 2015-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:126021 Serial 3049  
Permanent link to this record
 

 
Author Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Ke, X.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Strain accommodation through facet matching in La1.85Sr0.15CuO4/Nd1.85Ce0.15CuO4 ramp-edge junctions Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 086101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85Ce0.15CuO4 and superconducting hole-doped La1.85Sr0.15CuO4 thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85Sr0.15CuO4 with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360656800009 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 4 Open Access  
  Notes 312483 Esteem2; 246791 Countatoms; esteem2_jra2 Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:127690 c:irua:127690 Serial 3163  
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 3 Pages 032101-32107  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334220300002 Publication Date 2014-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 18 Open Access  
  Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:115555 Serial 3641  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 9 Pages 092801  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342568000020 Publication Date 2014-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:119950 Serial 82  
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G. pdf  url
doi  openurl
  Title Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
  Year 2016 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 4 Issue 4 Pages 061101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379042400002 Publication Date 2016-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 19 Open Access  
  Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335  
  Call Number c:irua:133785 Serial 4077  
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L. pdf  url
doi  openurl
  Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 5 Pages 036105  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398951000014 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 21 Open Access OpenAccess  
  Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335  
  Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479  
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K. url  doi
openurl 
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 6 Pages 066102  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404623000002 Publication Date 2017-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 16 Open Access  
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:152633 Serial 5369  
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G. url  doi
openurl 
  Title Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater  
  Volume 9 Issue 2 Pages 021113  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000630052100006 Publication Date 2021-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:177663 Serial 6783  
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G. url  doi
openurl 
  Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
  Year 2023 Publication APL materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 031109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953363800004 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335  
  Call Number EMAT @ emat @c:irua:196135 Serial 7377  
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B. pdf  url
doi  openurl
  Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
  Year 2024 Publication APL Materials Abbreviated Journal  
  Volume 12 Issue 4 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001202661800003 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335  
  Call Number EMAT @ emat @c:irua:205569 Serial 9120  
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A. doi  openurl
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett  
  Volume 6 Issue 1 Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Abingdon Editor  
  Language Wos 000428141500013 Publication Date 2017-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access  
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773  
  Call Number UA @ lucian @ c:irua:150921 Serial 4973  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title PECVD growth of carbon nanotubes : from experiment to simulation Type A1 Journal article
  Year 2012 Publication Journal of vacuum science and technology: B: micro-electronics processing and phenomena Abbreviated Journal  
  Volume 30 Issue 3 Pages 030803-030803,17  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanostructured carbon materials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbon materials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVD growth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVD growth are identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000305042000010 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2166-2746; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 42 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:97166 Serial 2570  
Permanent link to this record
 

 
Author Gatto Rotondo, G.; Darchuk, L.; Swaenen, M.; Van Grieken, R. url  doi
openurl 
  Title Micro-Raman and SEM analysis of minerals from the Darhib mine, Egypt Type A1 Journal article
  Year 2012 Publication Journal of analytical sciences, methods and instrumentation Abbreviated Journal  
  Volume 2 Issue 1 Pages 42-47  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The Darhib mine is one of the several talc deposits in the Hamata area of southeastern Egypt. Several specimens of minerals coming from this mine were subjected to complementary investigation by micro-Raman spectrometry and scanning electron microscopy. The difficulty in their identification is the appearance of most of them: they are all very small and only visible under the mineral binocular microscope(×10 – ×40). They appear as small crystals in fissures and holes and a visual determination on colour and crystal gives only a guess of what kind of mineral it could be. Therefore, only after analyzing them by micro-Raman and scanning electron microscopy it was possible to identify their structure and they can be divided in three main groups: one is quite generic and several minerals of different species were identified, such as quartz, talc, mottramite and chrysocolla, very common in the talc mine (these ones are Si-based minerals); the other one is constituted by four samples which are Zn and/or Cu rich, which means minerals of the rosasite or aurichalcite groups; the last group is constituted by two samples containing mainly Pb..  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2012-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2164-2745; 2164-2753 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:102567 Serial 8232  
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G. url  doi
openurl 
  Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
  Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 4 Issue 4 Pages N3127-N3133  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000349547900018 Publication Date 2014-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 19 Open Access  
  Notes Approved Most recent IF: 1.787; 2015 IF: 1.558  
  Call Number c:irua:125296 Serial 1150  
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N. url  doi
openurl 
  Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 2 Pages P66-P72  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000425215200010 Publication Date 2018-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 5 Open Access OpenAccess  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:149326 Serial 4933  
Permanent link to this record
 

 
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M. doi  openurl
  Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 6 Pages N73-N80  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440836000004 Publication Date 2018-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130  
Permanent link to this record
 

 
Author Dhayalan, S.K.; Kujala, J.; Slotte, J.; Pourtois, G.; Simoen, E.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Loo, R.; Vandervorst, W. url  doi
openurl 
  Title On the evolution of strain and electrical properties in as-grown and annealed Si:P epitaxial films for source-drain stressor applications Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 5 Pages P228-P237  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Heavily P doped Si:P epitaxial layers have gained interest in recent times as a promising source-drain stressor material for n type FinFETs (Fin Field Effect Transistors). They are touted to provide excellent conductivity as well as tensile strain. Although the as-grown layers do provide tensile strain, their conductivity exhibits an unfavorable behavior. It reduces with increasing P concentration (P > 1E21 at/cm(3)), accompanied by a saturation in the active carrier concentration. Subjecting the layers to laser annealing increases the conductivity and activates a fraction of P atoms. However, there is also a concurrent reduction in tensile strain (<1%). Literature proposes the formation of local semiconducting Si3P4 complexes to explain the observed behaviors in Si:P [Z. Ye et al., ECS Trans., 50(9) 2013, p. 1007-10111. The development of tensile strain and the saturation in active carrier is attributed to the presence of local complexes while their dispersal on annealing is attributed to strain reduction and increase in active carrier density. However, the existence of such local complexes is not proven and a fundamental void exists in understanding the structure-property correlation in Si:P films. In this respect, our work investigates the reason behind the evolution of strain and electrical properties in the as-grown and annealed Si:P epitaxial layers using ab-initio techniques and corroborate the results with physical characterization techniques. It will be shown that the strain developed in Si:P films is not due to any specific complexes while the formation of Phosphorus-vacancy complexes will be shown responsible for the carrier saturation and the increase in resistivity in the as-grown films. Interstitial/precipitate formation is suggested to be a reason for the strain loss in the annealed films. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440834200010 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153204 Serial 5122  
Permanent link to this record
 

 
Author Dhayalan, S.K.; Nuytten, T.; Pourtois, G.; Simoen, E.; Pezzoli, F.; Cinquanta, E.; Bonera, E.; Loo, R.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Vandervorst, W. pdf  doi
openurl 
  Title Insights into the C Distribution in Si:C/Si:C:P and the Annealing Behavior of Si:C Layers Type A1 Journal article
  Year 2019 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 8 Issue 4 Pages P209-P216  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Si:C and Si:C:P alloys are potential candidates for source-drain stressor applications in n-type Fin Field Effect Transistors (FinFETs). Increasing the C content to achieve high strain results in the arrangement of C atoms as third nearest neighbors (3nn) in the Si: C lattice. During thermal annealing, the presence of C atoms as 3nn may promote clustering at the interstitial sites, causing loss of stress. The concentration of C atoms as 3nn is reduced by the incorporation of a small amount of Ge atoms during the growth, whereas in-situ P doping does not influence this 3nn distribution [J Solid State Sci. Technol vol 6, p 755, 2017]. Small amounts of Ge are provided during low temperature selective epitaxial growth scheme, which are based on cyclic deposition and etching (CDE). In this work, we aim to provide physical insights into the aforementioned phenomena, to understand the behavior of 3nn C atoms and the types of defects that are formed in the annealed Si: C films. Using ab-initio simulations, the Ge-C interaction in the Si matrix is investigated and this insight is used to explain how the Ge incorporation leads to a reduced 3nn distribution of the C atoms. The interaction between C and P in the Si: C: P films is also investigated to explain why the P incorporation has not led to a reduction in the 3nn distribution. We then report on the Raman characterization of Si: C layers subjected to post epi annealing. As the penetration depth of the laser is dependent on the wavelength, Raman measurements at two different wavelengths enable us to probe the depth distribution of 3nn C atoms after applying different annealing conditions. We observed a homogeneous loss in 3nn C throughout the layer. Whereas in the kinematic modeling of high resolution X-ray diffraction spectra, a gradient in the substitutional C loss was observed close to the epitaxial layer/substrate interface. This gradient can be due to the out diffusion of C atoms into the Si substrate or to the formation of interstitial C clusters, which cannot be distinguished in HR-XRD. Deep Level Transient Spectroscopy indicated that the prominent out-diffusing species was interstitial CO complex while the interstitial C defects were also prevalent in the epi layer. (c) 2019 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465069200001 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.787 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ admin @ c:irua:160399 Serial 5275  
Permanent link to this record
 

 
Author Vohra, A.; Makkonen, I.; Pourtois, G.; Slotte, J.; Porret, C.; Rosseel, E.; Khanam, A.; Tirrito, M.; Douhard, B.; Loo, R.; Vandervorst, W. url  doi
openurl 
  Title Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx Type A1 Journal article
  Year 2020 Publication Ecs Journal Of Solid State Science And Technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 9 Issue 4 Pages 044010-44012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper benchmarks various epitaxial growth schemes based on n-type group-IV materials as viable source/drain candidates for Ge nMOS devices. Si:P grown at low temperature on Ge, gives an active carrier concentration as high as 3.5 x 10(20) cm(-3) and a contact resistivity down to 7.5 x 10(-9) Omega.cm(2). However, Si:P growth is highly defective due to large lattice mismatch between Si and Ge. Within the material stacks assessed, one option for Ge nMOS source/drain stressors would be to stack Si:P, deposited at contact level, on top of a selectively grown n-SiyGe1-x-ySnx at source/drain level, in line with the concept of Si passivation of n-Ge surfaces to achieve low contact resistivities as reported in literature (Martens et al. 2011 Appl. Phys. Lett., 98, 013 504). The saturation in active carrier concentration with increasing P (or As)-doping is the major bottleneck in achieving low contact resistivities for as-grown Ge or SiyGe1-x-ySnx. We focus on understanding various dopant deactivation mechanisms in P-doped Ge and Ge1-xSnx alloys. First principles simulation results suggest that P deactivation in Ge and Ge1-xSnx can be explained both by P-clustering and donor-vacancy complexes. Positron annihilation spectroscopy analysis, suggests that dopant deactivation in P-doped Ge and Ge1-xSnx is primarily due to the formation of P-n-V and SnmPn-V clusters. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531473500002 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access  
  Notes ; The imec core CMOS program members, European Commission, the TAKEMI5 ECSEL project, local authorities and the imec pilot line are acknowledged for their support. Air Liquide Advanced Materials is acknowledged for providing advanced precursor gases. A. V. acknowledges his long stay abroad grant and a grant for participation in congress abroad from the Research Foundation-Flanders (Application No. V410518N and K159219N). I. M. acknowledges financial support from Academy of Finland (Project Nos. 285 809, 293 932 and 319 178). CSC-IT Center for Science, Finland is acknowledged for providing the computational resources. ; Approved Most recent IF: 2.2; 2020 IF: 1.787  
  Call Number UA @ admin @ c:irua:169502 Serial 6607  
Permanent link to this record
 

 
Author Goux, L.; Fantini, A.; Govoreanu, B.; Kar, G.; Clima, S.; Chen, Y.-Y.; Degraeve, R.; Wouters, D.J.; Pourtois, G.; Jurczak, M. doi  openurl
  Title Asymmetry and switching phenomenology in TiN\ (Al2O3) \ HfO2 \ Hf systems Type A1 Journal article
  Year 2012 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett  
  Volume 1 Issue 4 Pages 63-65  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, we address the bipolar resistive switching phenomenology in scaled TiN\HfO2\Hf cells. By means of stack engineering using a thin Al2O3 layer inserted either at the TiN\HfO2 or at the Hf\HfO2 interface, we demonstrate that the reset operation takes place close to the TiNanode. Due to the increase of the oxygen-vacancy profile from the TiN to the Hf interface, the filament-confining and wide band-gap Al2O3 layer should indeed be engineered at the interface with the TiN electrode in order to further improve the switching control and to allow reaching larger state resistances. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.003204ssl] All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000318340300005 Publication Date 2012-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.184 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.184; 2012 IF: NA  
  Call Number UA @ lucian @ c:irua:108530 Serial 160  
Permanent link to this record
 

 
Author Delabie, A.; Jayachandran, S.; Caymax, M.; Loo, R.; Maggen, J.; Pourtois, G.; Douhard, B.; Conard, T.; Meersschaut, J.; Lenka, H.; Vandervorst, W.; Heyns, M.; url  doi
openurl 
  Title Epitaxial chemical vapor deposition of silicon on an oxygen monolayer on Si(100) substrates Type A1 Journal article
  Year 2013 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett  
  Volume 2 Issue 11 Pages P104-P106  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Crystalline superlattices consisting of alternating periods of Si layers and O-atomic layers are potential new channel materials for scaled CMOS devices. In this letter, we investigate Chemical Vapor Deposition (CVD) for the controlled deposition of O-atoms with O-3 as precursor on Si(100) substrates and Si epitaxy on the O-layer. The O-3 reaction at 50 degrees C on the H-terminated Si results in the formation of Si-OH and/or Si-O-Si-H surface species with monolayer O-content. Defect-free epitaxial growth of Si on an O-layer containing 6.4E+14 O-atoms/cm(2) is achieved from SiH4 at 500 degrees C. (C) 2013 The Electrochemical Society. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000324582600006 Publication Date 2013-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.184 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1.184; 2013 IF: 0.781  
  Call Number UA @ lucian @ c:irua:111208 Serial 1070  
Permanent link to this record
 

 
Author Lin, A.G.; Xiang, B.; Merlino, D.J.; Baybutt, T.R.; Sahu, J.; Fridman, A.; Snook, A.E.; Miller, V. pdf  doi
openurl 
  Title Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors Type A1 Journal article
  Year 2018 Publication Oncoimmunology Abbreviated Journal  
  Volume 7 Issue 9 Pages e1484978  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443993100030 Publication Date 2018-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2162-4011; 2162-402x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 28 Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155651 Serial 5119  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: