|   | 
Details
   web
Records
Author Obeid, M.M.; Stampfl, C.; Bafekry, A.; Guan, Z.; Jappor, H.R.; Nguyen, C., V; Naseri, M.; Hoat, D.M.; Hieu, N.N.; Krauklis, A.E.; Tuan V Vu; Gogova, D.
Title First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate Type A1 Journal article
Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 22 Issue 27 Pages 15354-15364
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonmetal doping is an effective approach to modify the electronic band structure and enhance the photocatalytic performance of bismuth oxyhalides. Using density functional theory, we systematically examine the fundamental properties of single-layer BiOBr doped with boron (B) and phosphorus (P) atoms. The stability of the doped models is investigated based on the formation energies, where the substitutional doping is found to be energetically more stable under O-rich conditions than under Bi-rich ones. The results showed that substitutional doping of P atoms reduced the bandgap of pristine BiOBr to a greater extent than that of boron substitution. The calculation of the effective masses reveals that B doping can render the electrons and holes of pristine BiOBr lighter and heavier, respectively, resulting in a slower recombination rate of photoexcited electron-hole pairs. Based on the results of HOMO-LUMO calculations, the introduction of B atoms tends to increase the number of photocatalytically active sites. The top of the valence band and the conduction band bottom of the B doped BiOBr monolayer match well with the water redox potentials in an acidic environment. The absorption spectra propose that B(P) doping causes a red-shift. Overall, the results predict that nonmetal-doped BiOBr monolayers have a reduced bandgap, a slow recombination rate, more catalytically active sites, enhanced optical absorption edges, and reduced work functions, which will contribute to superior photocatalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549894000018 Publication Date 2020-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited 18 Open Access
Notes ; This work was partially supported by the financial support from the Natural Science Foundation of China (Grant No. 11904203) and the Fundamental Research Funds of Shandong University (Grant No. 2019GN065). ; Approved Most recent IF: 3.3; 2020 IF: 4.123
Call Number UA @ admin @ c:irua:171235 Serial 6522
Permanent link to this record
 

 
Author Bafekry, A.
Title Graphene-like BC₆N single-layer: tunable electronic and magnetic properties via thickness, gating, topological defects, and adatom/molecule Type A1 Journal article
Year 2020 Publication Physica E-Low-Dimensional Systems & Nanostructures Abbreviated Journal Physica E
Volume 118 Issue Pages 113850-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory-based first-principles calculations, we investigate the structural, electronic, optical, and transport properties of pristine single-layer BC6N. Under different external actions and functionalization. Increasing the thickness of the structure results in a decrease of the band gap. Applying a perpendicular electric field decreases the band gap and a semiconductor-to-topological insulator transition is revealed. Uniaxial and biaxial strains of +8% result in a semiconductor-to-metal transition. Nanoribbons of BC6N having zigzag edge with even (odd) values of widths, become metal (semiconductor), while the armchair edge nanoribbons exhibit robust semiconducting behavior. In addition, we systematically investigate the effect of surface adatom and molecule, substitutional impurity and defect engineering on the electronic properties of single-layer BC6N and found transitions from metal to half-metal, to ferromagnetic metal, to dilute magnetic semiconductor, and even to spin-glass semiconductor. Furthermore we found that, topological defects including vacancies and Stone–Wales type, induce magnetism in single-layer BC6N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515321700032 Publication Date 2019-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited 30 Open Access
Notes ; ; Approved Most recent IF: 3.3; 2020 IF: 2.221
Call Number UA @ admin @ c:irua:169750 Serial 6530
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M.
Title Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 44 Issue 36 Pages 15785-15792
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571972400054 Publication Date 2020-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited 7 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269
Call Number UA @ admin @ c:irua:171936 Serial 6561
Permanent link to this record
 

 
Author Dubinina, T.V.; Moiseeva, E.O.; Astvatsaturov, D.A.; Borisova, N.E.; Tarakanov, P.A.; Trashin, S.A.; De Wael, K.; Tomilova, L.G.
Title Novel 2-naphthyl substituted zinc naphthalocyanine : synthesis, optical, electrochemical and spectroelectrochemical properties Type A1 Journal article
Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 44 Issue 19 Pages 7849-7857
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536157700023 Publication Date 2020-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited 1 Open Access
Notes ; Synthesis, identification and optical studies of target compounds were supported by the Russian Science Foundation Grant No 19-73-00099. Electrochemical and spectroelectrochemical measurements were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No 18-53-76006 ERA). Fluorescence studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-3847.2019.3). The NMR spectroscopic measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University. ; Approved Most recent IF: 3.3; 2020 IF: 3.269
Call Number UA @ admin @ c:irua:168952 Serial 6570
Permanent link to this record
 

 
Author Parsons, T.G.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A.
Title Preparation of the noncentrosymmetric ferrimagnetic phase La0.9Ba0.1Mn0.96O2.43 by topochemical reduction Type A1 Journal article
Year 2020 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem
Volume 287 Issue Pages 121356-121357
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Topochemical reduction of La0.9Ba0.1MnO3 with NaH at 225 degrees C yields the brownmillerite phase La0.9Ba0.1MnO2.5. However, reduction with CaH2 at 435 degrees C results in the formation of La0.9Ba0.1Mn0.96O2.43 via the deintercalation of both oxide anions and manganese cations from the parent perovskite phase. Electron and neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts a complex noncentrosymmetric structure, described in space group I23, confirmed by SHG measurements. Low-temperature neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts an ordered magnetic structure in which all the nearest neighbor interactions are antiferromagnetic. However, the presence of ordered manganese cation-vacancies results in a net ferrimagnetic structure with net saturated moment of 0.157(2) mu B per manganese center.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533632700029 Publication Date 2020-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 3.3 Times cited Open Access Not_Open_Access
Notes ; We thank the EPSRC for funding this work and E. Suard for assisting with the collection of the neutron powder diffraction data. PSH thanks the Welch Foundation (Grant E-1457) for support. ; Approved Most recent IF: 3.3; 2020 IF: 2.299
Call Number UA @ admin @ c:irua:169450 Serial 6583
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B.
Title Two distinctive regimes in the charge transport of a magnetic topological ultra thin film Type A1 Journal article
Year 2020 Publication New Journal Of Physics Abbreviated Journal New J Phys
Volume 22 Issue 12 Pages 123004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the magnetic impurities on the charge transport in a magnetic topological ultra-thin film (MTF) is analytically investigated by applying the semi-classical Boltzmann framework through a modified relaxation-time approximation. Our results for the relaxation time of electrons as well as the charge conductivity of the system exhibit two distinct regimes of transport. We show that the generated charge current in a MTF is always dissipative and anisotropic when both conduction bands are involved in the charge transport. The magnetic impurities induce a chirality selection rule for the transitions of electrons which can be altered by changing the orientation of the magnetic impurities. On the other hand, when a single conduction band participates in the charge transport, the resistivity is isotropic and can be entirely suppressed due to the corresponding chirality selection rule. Our findings propose a method to determine an onset thickness at which a crossover from a three-dimensional magnetic topological insulator to a (two-dimensional) MTF occurs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000596436300001 Publication Date 2020-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited 2 Open Access
Notes ; MZ acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG02- 05ER46203. ; Approved Most recent IF: 3.3; 2020 IF: 3.786
Call Number UA @ admin @ c:irua:174387 Serial 6701
Permanent link to this record
 

 
Author Das, P.P.; Guzzinati, G.; Coll, C.; Gomez Perez, A.; Nicolopoulos, S.; Estrade, S.; Peiro, F.; Verbeeck, J.; Zompra, A.A.; Galanis, A.S.
Title Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy Type A1 Journal article
Year 2020 Publication Polymers Abbreviated Journal Polymers-Basel
Volume 12 Issue 7 Pages 1434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission electron microscope (TEM) is expected to be a promising technique to screen and identify the different (organic) compounds used in a typical pharmaceutical or biological system and to detect any impurities present, if any, during the synthesis or formulation process. In this work, we propose the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by further correlation with advanced DFT, simulations were utilized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556786700001 Publication Date 2020-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.364 Times cited 6 Open Access OpenAccess
Notes C.C., F.P., S.E. acknowledges the Spanish government for projects MAT2016-79455-P, Research Network RED2018-102609-T and the FPI (BES-2017-080045) grant of Ministerio de Ciència, Innovación y Universidades. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO). P.P.D., A.G.P., S.N. gratefully acknowledge much helpful discussion on EELS study for organic compounds with Dr. Andrey Chuvilin (CIC NANOGUNE, Donostia—San Sebastian, Spain). The authors also acknowledge Raúl Arenal (University de Zaragoza, Spain) for useful discussion on EELS. The authors acknowledge also Ulises Julio Amador Elizondo (Universidad CEU San Pablo, Spain) for kindly provide the aripiprazole and piroxicam samples for EELS study.; EUSMI_TA; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:170603 Serial 6400
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Moretti, M.; Van Passel, S.
Title The effect of policy leveraging climate change adaptive capacity in agriculture Type A1 Journal Article
Year 2020 Publication European Review Of Agricultural Economics Abbreviated Journal Eur Rev Agric Econ
Volume Issue Pages
Keywords A1 Journal Article; Engineering Management (ENM)
Abstract Agricultural adaptation to climate change is indispensable. However, the degree of adaptation depends on adaptive capacity levels and it only takes place if the appropriate resources are present. Cross-sectional climate response models ignore this requirement. This paper adapts the Ricardian method to control for a generic territorial adaptive capacity index. The results for a sample of over 60.000 European farms show a significant non-linear positive relationship between adaptive capacity and climate responsiveness and that some regions in Europe can increase their climate responsiveness significantly. This confirms that improvement of adaptive capacity is an important policy tool to enhance adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000558982300007 Publication Date 2019-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1587 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited Open Access
Notes This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). Approved Most recent IF: 3.4; 2020 IF: 1.6
Call Number ENM @ enm @c:irua:167258 Serial 6350
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G.
Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 024406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513552900003 Publication Date 2020-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited 6 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167782 Serial 6375
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.
Title Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps Type A1 Journal article
Year 2020 Publication Frontiers in energy research Abbreviated Journal Front. Energy Res.
Volume 8 Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into

value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma

technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000553392300001 Publication Date 2020-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-598X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited Open Access OpenAccess
Notes We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. Approved Most recent IF: 3.4; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:170136 Serial 6390
Permanent link to this record
 

 
Author Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M.
Title The 2020 plasma catalysis roadmap Type A1 Journal article
Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 53 Issue 44 Pages 443001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, CH4 activation into hydrogen, higher hydrocarbons or oxygenates, and NH3 synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOx removal. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563194400001 Publication Date 2020-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited Open Access OpenAccess
Notes U.S. Department of Energy, DE-FE0031862 DE-FG02-06ER15830 ; U.S. Air Force Office of Scientific Research, FA9550-18-1-0157 ; University of Antwerp, 32249 ; JSPS KAKENSHI, JP18H01208 ; UK EPSRC Impact Acceleration Account; National Science Foundation, EEC-1647722 ; H2020 Marie Skłodowska-Curie Actions, 823745 ; Horizon 2020 Framework Programme, 810182 – SCOPE ERC Synergy pr ; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project). Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:171915 Serial 6408
Permanent link to this record
 

 
Author Vanderveken, F.; Ahmad, H.; Heyns, M.; Sorée, B.; Adelmann, C.; Ciubotaru, F.
Title Excitation and propagation of spin waves in non-uniformly magnetized waveguides Type A1 Journal article
Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 53 Issue 49 Pages 495006
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The characteristics of spin waves in ferromagnetic waveguides with non-uniform magnetization have been investigated for situations where the shape anisotropy field of the waveguide is comparable to the external bias field. Spin-wave generation was realized by the magnetoelastic effect by applying normal and shear strain components, as well as by the Oersted field emitted by an inductive antenna. The magnetoelastic excitation field has a non-uniform profile over the width of the waveguide because of the non-uniform magnetization orientation, whereas the Oersted field remains uniform. Using micromagnetic simulations, we indicate that both types of excitation fields generate quantised width modes with both odd and even mode numbers as well as tilted phase fronts. We demonstrate that these effects originate from the average magnetization orientation with respect to the main axes of the magnetic waveguide. Furthermore, it is indicated that the excitation efficiency of the second-order mode generally surpasses that of the first-order mode due to their symmetry. The relative intensity of the excited modes can be controlled by the strain state as well as by tuning the dimensions of the excitation area. Finally, we demonstrate that the nonreciprocity of spin-wave radiation due to the chirality of an Oersted field generated by an inductive antenna is absent for magnetoelastic spin-wave excitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575331600001 Publication Date 2020-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited 1 Open Access
Notes ; This work has been supported by imec's industrial affiliate program on beyond-CMOS logic. It has also received funding from the European Union's Horizon 2020 research and innovation program within the FET-OPEN project CHIRON under grant agreement No. 801055. F V acknowledges financial support from the Research Foundation -Flanders (FWO) through grant No. 1S05719N. ; Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:172641 Serial 6515
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume Issue Pages 1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543344800001 Publication Date 2020-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
 

 
Author Lin, S.-C.; Kuo, C.-T.; Shao, Y.-C.; Chuang, Y.-D.; Geessinck, J.; Huijben, M.; Rueff, J.-P.; Graff, I.L.; Conti, G.; Peng, Y.; Bostwick, A.; Gullikson, E.; Nemsak, S.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Ghiringhelli, G.; Schneider, C.M.; Fadley, C.S.
Title Two-dimensional electron systems in perovskite oxide heterostructures : role of the polarity-induced substitutional defects Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal
Volume 4 Issue 11 Pages 115002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, the fundamental origins of the 2DES are still not understood, e.g., the microscopic mechanisms of coexisting interface conductivity and magnetism. Here we report a comprehensive spectroscopic investigation on the depth profile of 2DES-relevant Ti 3d interface carriers using depthand element-specific techniques like standing-wave excited photoemission and resonant inelastic scattering. We found that one type of Ti 3d interface carriers, which give rise to the 2DES are located within three unit cells from the n-type interface in the SrTiO3 layer. Unexpectedly, another type of interface carriers, which are polarity-induced Ti-on-Al antisite defects, reside in the first three unit cells of the opposing LaAlO3 layer (similar to 10 angstrom). Our findings provide a microscopic picture of how the localized and mobile Ti 3d interface carriers distribute across the interface and suggest that the 2DES and 2D magnetism at the LaAlO3/SrTiO3 interface have disparate explanations as originating from different types of interface carriers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592432200004 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited 7 Open Access OpenAccess
Notes ; We thank G. M. De Luca and L. Braicovich for discussions. Charles S. Fadley was deceased on August 1, 2019. We are grateful for his significant contributions to this work. We thank Advanced Light Source for the access to Beamline 8.0.3 (qRIXS) via Proposal No. 09892 and beamline 7.0.2 (MAESTRO) via Proposal No. RA-00291 that contributed to the results presented here. We thank synchrotron SOLEIL (via Proposal No. 99180118) for the access to Beamline GALAXIES. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (Advanced Light Source), and by DOE Contract No. DE-SC0014697 through the University of California, Davis (S.-C.L., C.-T.K, and C.S.F.), and from the Julich Research Center, Peter Grunberg Institute, PGI-6. I. L. G. wishes to thank Brazilian scientific agencies CNPQ (Project No. 200789/2017-1) and CAPES (CAPES-PrInt-UFPR) for their financial support. J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union's horizon 2020 research and innovation program ES-TEEM3 under grant agreement no 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. ; esteem3TA; esteem3reported Approved Most recent IF: 3.4; 2020 IF: NA
Call Number UA @ admin @ c:irua:174316 Serial 6713
Permanent link to this record
 

 
Author Polanco, C.A.; Pandey, T.; Berlijn, T.; Lindsay, L.
Title Defect-limited thermal conductivity in MoS₂ Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal
Volume 4 Issue 1 Pages 014004-14009
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The wide measured range of thermal conductivities (k) for monolayer MoS2 and the corresponding incongruent calculated values in the literature all suggest that extrinsic defect thermal resistance is significant and varied in synthesized samples of this material. Here we present defect-mediated thermal transport calculations of MoS2 using interatomic forces derived from density functional theory combined with Green's function methods to describe phonon-point-defect interactions and a Peierls-Boltzmann formalism for transport. Conductivity calculations for bulk and monolayer MoS2 using different density functional formalisms are compared. Nonperturbative first-principles methods are used to describe defect-mediated spectral functions, scattering rates, and phonon k, particularly from sulfur vacancies (VS), and in the context of the plethora of measured and calculated literature values. We find that k of monolayer MoS2 is sensitive to phonon-VS scattering in the range of experimentally observed densities, and that first-principles k calculations using these densities can explain the range of measured values found in the literature. Furthermore, measured k values for bulk MoS2 are more consistent because VS defects are not as prevalent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619240000001 Publication Date 2020-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2020 IF: NA
Call Number UA @ admin @ c:irua:190510 Serial 7757
Permanent link to this record
 

 
Author Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A.
Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536892900001 Publication Date 2020-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.5 Times cited Open Access
Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372
Permanent link to this record
 

 
Author Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A.
Title KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures Type A1 Journal article
Year 2020 Publication Royal Society Open Science Abbreviated Journal Roy Soc Open Sci
Volume 7 Issue 2 Pages 191809-191832
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518020200001 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.5 Times cited 19 Open Access OpenAccess
Notes ; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; Approved Most recent IF: 3.5; 2020 IF: 2.243
Call Number UA @ admin @ c:irua:167751 Serial 6556
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W.
Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 31 Issue 44 Pages 445702
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561424400001 Publication Date 2020-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.5 Times cited 13 Open Access OpenAccess
Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44
Call Number UA @ admin @ c:irua:171119 Serial 6649
Permanent link to this record
 

 
Author Celentano, G.; Rizzo, F.; Augieri, A.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; MacManus-Driscoll, J.L.; Feighan, J.; Kursumovic, A.; Meledin, A.; Mayer, J.; Van Tendeloo, G.
Title YBa2Cu3O7−xfilms with Ba2Y(Nb,Ta)O6nanoinclusions for high-field applications Type A1 Journal article
Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 33 Issue 4 Pages 044010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (J c) behaviour, with the maximum pinning force density F p(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the F p is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving F p(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the F p(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong J c improvement at lower temperature with F p = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525650500001 Publication Date 2020-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.6 Times cited Open Access OpenAccess
Notes This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7/2007–2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom programme 2014-2018 and 2019-2020 under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3 (Nano-engineered YBCO Superconducting Tapes for High Field Applications, NESTApp). G. C. acknowledges the support of Michele De Angelis for XRD measurements and calculations. Approved Most recent IF: 3.6; 2020 IF: 2.878
Call Number UA @ lucian @c:irua:168582 Serial 6394
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A.
Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
Year 2020 Publication Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P
Volume 40 Issue 5 Pages 1163-1187
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543012200001 Publication Date 2020-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.6 Times cited Open Access
Notes This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B.
Title Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for phase-slip flux qubits Type A1 Journal article
Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 33 Issue 12 Pages 125002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop. Since their first direct observation, there have been substantial developments in building charge-insensitive quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a phase-slip flux qubit with a broadly tunable transition frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000577207000001 Publication Date 2020-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.6 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 3.6; 2020 IF: 2.878
Call Number UA @ admin @ c:irua:172643 Serial 6503
Permanent link to this record
 

 
Author Van Alphen, S.; Vermeiren, V.; Butterworth, T.; van den Bekerom, D.C.M.; van Rooij, G.J.; Bogaerts, A.
Title Power Pulsing To Maximize Vibrational Excitation Efficiency in N2Microwave Plasma: A Combined Experimental and Computational Study Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 3 Pages 1765-1779
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for N2 fixation, being a flexible, electricity-driven alternative for the current conventional fossil fuel-based N2 fixation processes. As the vibrational-induced dissociation of N2 is found to be an energy-efficient pathway to acquire atomic N for the fixation processes, plasmas that are in vibrational nonequilibrium seem promising for this application. However, an important challenge in using nonequilibrium plasmas lies in preventing vibrational−translational (VT) relaxation processes, in which vibrational energy crucial for N2 dissociation is lost to gas heating. We present here both experimental and modeling results for the vibrational and gas temperature in a microsecond-pulsed microwave (MW) N2 plasma, showing how power pulsing can suppress this unfavorable VT relaxation and achieve a maximal vibrational nonequilibrium. By means of our kinetic model, we demonstrate that pulsed plasmas take advantage of the long time scale on which VT processes occur, yielding a very pronounced nonequilibrium over the whole N2 vibrational ladder. Additionally, the effect of pulse parameters like the pulse frequency and pulse width are investigated, demonstrating that the advantage of pulsing to inhibit VT relaxation diminishes for high pulse frequencies (around 7000 kHz) and long power pulses (above 400 μs). Nevertheless, all regimes studied here demonstrate a clear vibrational nonequilibrium while only requiring a limited power-on time, and thus, we may conclude that a pulsed plasma seems very interesting for energyefficient vibrational excitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000509438600001 Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:165586 Serial 5443
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K.
Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
Year 2020 Publication ChemPhotoChem Abbreviated Journal
Volume 4 Issue 4 Pages 300-306
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520100400001 Publication Date 2020-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA
Call Number UA @ admin @ c:irua:165912 Serial 5771
Permanent link to this record
 

 
Author Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T.
Title Bifunctional nickel-nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 124 Pages 1369-1381
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Bifunctionality is a key feature of many industrial catalysts, supported metal clusters and particles in particular, and the development of such catalysts for the CO2 reduction reaction (CO2RR) to hydrocarbons and alcohols is gaining traction in light of recent advancements in the field. Carbon-supported Cu nanoparticles are suitable candidates for integration in the state-of-the-art reaction interfaces, and here, we propose, synthesize, and evaluate a bifunctional Ni–N-doped-C-supported Cu electrocatalyst, in which the support possesses active sites for selective CO2 conversion to CO and Cu nanoparticles catalyze either the direct CO2 or CO reduction to hydrocarbons. In this work, we introduce the scientific rationale behind the concept, its applicability, and the challenges with regard to the catalyst. From the practical aspect, the deposition of Cu nanoparticles onto carbon black and Ni–N–C supports via an ammonia-driven deposition precipitation method is reported and explored in more detail using X-ray diffraction, thermogravimetric analysis, and hydrogen temperature-programmed reduction. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS) give further evidence of the presence of Cu-containing nanoparticles on the Ni–N–C supports while revealing an additional relationship between the nanoparticle’s composition and the electrode’s electrocatalytic performance. Compared to the benchmark carbon black-supported Cu catalysts, Ni–N–C-supported Cu delivers up to a 2-fold increase in the partial C2H4 current density at −1.05 VRHE (C1/C2 = 0.67) and a concomitant 10-fold increase of the CO partial current density. The enhanced ethylene production metrics, obtained by virtue of the higher intrinsic activity of the Ni–N–C support, point out toward a synergistic action between the two catalytic functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000508467700015 Publication Date 2020-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited 24 Open Access OpenAccess
Notes ; N.D. acknowledges sponsoring from the research foundation of Flanders (FWO) in the frame of a postdoctoral grant (12Y3919N N.D.). J.H. greatly acknowledges the Research Foundation Flanders (FWO) for support through a postdoctoral fellowship (28761). T.V.E. and P.C. acknowledge financial support from the EU-Partial-PGMs project (H2020NMP-686086). The authors also acknowledge financial support from the university research fund (BOF-GOA PS ID No. 33928). ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:165326 Serial 6286
Permanent link to this record
 

 
Author Heijkers, S.; Aghaei, M.; Bogaerts, A.
Title Plasma-Based CH4Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 13 Pages 7016-7030
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining interest for CH4 conversion into higher hydrocarbons and H2. However, the performance in terms of conversion and selectivity toward different hydrocarbons is different for different plasma types, and the underlying mechanisms are not yet fully understood. Therefore, we study here these mechanisms in different plasma sources, by means of a chemical kinetics model. The model is first validated by comparing the calculated conversions and hydrocarbon/H2 selectivities with experimental results in these different plasma types and over a wide range of specific energy input (SEI) values. Our model predicts that vibrational−translational nonequilibrium is negligible in all CH4 plasmas investigated, and instead, thermal conversion is important. Higher gas temperatures also lead to a more selective production of unsaturated hydrocarbons (mainly C2H2) due to neutral dissociation of CH4 and subsequent dehydrogenation processes, while three-body recombination reactions into saturated hydrocarbons (mainly C2H6, but also higher hydrocarbons) are dominant in low temperature plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526328500007 Publication Date 2020-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; We acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant No. G.0383.16N), the Methusalem Grant, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 − SCOPE ERC Synergy project). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:168096 Serial 6358
Permanent link to this record
 

 
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title Activation of CO2on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 12 Pages 6747-6755
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, we use density functional theory calculations to study the combined effect of external electric fields, surface morphology, and surface charge on CO2 activation over Cu(111), Cu(211), Cu(110), and Cu(001) surfaces. We observe that the binding energy of the CO2 molecule on Cu surfaces increases significantly upon increasing the applied electric field strength. In addition, rougher surfaces respond more effectively to the presence of the external electric field toward facilitating the formation of a carbonate-like CO2 structure and the transformation of the most stable adsorption mode from physisorption to chemisorption. The presence of surface charges further strengthens the electric field effect and consequently causes an improved bending of the CO2 molecule and C−O bond length elongation. On the other hand, a net charge in the absence of an externally applied electric field shows only a marginal effect on CO2 binding. The chemisorbed CO2 is more stable and further activated when the effects of an external electric field, rough surface, and surface charge are combined. These results can help to elucidate the underlying factors that control CO2 activation in heterogeneous and plasma catalysis, as well as in electrochemical processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526396900030 Publication Date 2020-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access
Notes Bijzonder Onderzoeksfonds, 32249 ; The financial support from the TOP research project of the Research Fund of the University of Antwerp (grant ID: 32249) is highly acknowledged by the authors. The computational resources used in this study were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:168606 Serial 6361
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume Issue Pages acs.jpcc.0c02630
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538758700039 Publication Date 2020-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access
Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number DuEL @ duel @c:irua:169223 Serial 6367
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume Issue Pages acs.jpcc.0c02630
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538758700039 Publication Date 2020-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access
Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number DuEL @ duel @c:irua:169223 Serial 6368
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A.
Title Plasma-Based CO2Conversion: To Quench or Not to Quench? Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 34 Pages 18401-18415
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for CO2 conversion. The gas temperature in (and after) the plasma reactor largely affects the performance. Therefore, we examine the effect of cooling/quenching, during and after the plasma, on the CO2 conversion and energy efficiency, for typical “warm” plasmas, by means of chemical kinetics modeling. For plasmas at low specific energy input (SEI ∼ 0.5 eV/molecule), it is best to quench at the plasma end, while for high-SEI plasmas (SEI ∼ 4 eV/molecule), quenching at maximum conversion is better. For low-SEI plasmas, quenching can even increase the conversion beyond the dissociation in the plasma, known as superideal quenching. To better understand the effects of quenching at different plasma conditions, we study the dissociation and recombination rates, as well as the vibrational distribution functions (VDFs) of CO2, CO, and O2. When a high vibrational−translational (VT) nonequilibrium exists at the moment of quenching, the dissociation and recombination reaction rates both increase. Depending on the conversion degree at the moment of quenching, this can lead to a net increase or decrease of CO2 conversion. In general, however, and certainly for equilibrium plasmas at high temperature, quenching after the plasma helps prevent recombination reactions and clearly enhances the final CO2 conversion. We also investigate the effect of different quenching cooling rates on the CO2 conversion and energy efficiency. Finally, we compare plasma-based conversion to purely thermal conversion. For warm plasmas with typical temperatures of 3000−4000 K, the conversion is roughly thermal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566481000003 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.7 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; This research was supported by the FWO project (grant no. G.0383.16N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:172052 Serial 6407
Permanent link to this record