|
Record |
Links |
|
Author |
Polanco, C.A.; Pandey, T.; Berlijn, T.; Lindsay, L. |
|
|
Title |
Defect-limited thermal conductivity in MoS₂ |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Physical review materials |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
1 |
Pages |
014004-14009 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The wide measured range of thermal conductivities (k) for monolayer MoS2 and the corresponding incongruent calculated values in the literature all suggest that extrinsic defect thermal resistance is significant and varied in synthesized samples of this material. Here we present defect-mediated thermal transport calculations of MoS2 using interatomic forces derived from density functional theory combined with Green's function methods to describe phonon-point-defect interactions and a Peierls-Boltzmann formalism for transport. Conductivity calculations for bulk and monolayer MoS2 using different density functional formalisms are compared. Nonperturbative first-principles methods are used to describe defect-mediated spectral functions, scattering rates, and phonon k, particularly from sulfur vacancies (VS), and in the context of the plethora of measured and calculated literature values. We find that k of monolayer MoS2 is sensitive to phonon-VS scattering in the range of experimentally observed densities, and that first-principles k calculations using these densities can explain the range of measured values found in the literature. Furthermore, measured k values for bulk MoS2 are more consistent because VS defects are not as prevalent. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000619240000001 |
Publication Date |
2020-01-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2475-9953 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.4 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 3.4; 2020 IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:190510 |
Serial |
7757 |
|
Permanent link to this record |