|
Record |
Links |
|
Author |
Bogaerts, A.; Centi, G. |
|
|
Title |
Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Frontiers in energy research |
Abbreviated Journal |
Front. Energy Res. |
|
|
Volume |
8 |
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into
value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma
technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000553392300001 |
Publication Date |
2020-07-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2296-598X |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.4 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. |
Approved |
Most recent IF: 3.4; 2020 IF: NA |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:170136 |
Serial |
6390 |
|
Permanent link to this record |