|
Record |
Links |
|
Author |
Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C. |
|
|
Title |
Activation of CO2on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Physical Chemistry C |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
124 |
Issue |
12 |
Pages |
6747-6755 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In this work, we use density functional theory calculations to study the combined effect of external electric fields, surface morphology, and surface charge on CO2 activation over Cu(111), Cu(211), Cu(110), and Cu(001) surfaces. We observe that the binding energy of the CO2 molecule on Cu surfaces increases significantly upon increasing the applied electric field strength. In addition, rougher surfaces respond more effectively to the presence of the external electric field toward facilitating the formation of a carbonate-like CO2 structure and the transformation of the most stable adsorption mode from physisorption to chemisorption. The presence of surface charges further strengthens the electric field effect and consequently causes an improved bending of the CO2 molecule and C−O bond length elongation. On the other hand, a net charge in the absence of an externally applied electric field shows only a marginal effect on CO2 binding. The chemisorbed CO2 is more stable and further activated when the effects of an external electric field, rough surface, and surface charge are combined. These results can help to elucidate the underlying factors that control CO2 activation in heterogeneous and plasma catalysis, as well as in electrochemical processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000526396900030 |
Publication Date |
2020-03-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
|
Open Access |
|
|
|
Notes |
Bijzonder Onderzoeksfonds, 32249 ; The financial support from the TOP research project of the Research Fund of the University of Antwerp (grant ID: 32249) is highly acknowledged by the authors. The computational resources used in this study were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. |
Approved |
Most recent IF: 3.7; 2020 IF: 4.536 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:168606 |
Serial |
6361 |
|
Permanent link to this record |