toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z. url  doi
openurl 
  Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
  Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 10 Issue 6 Pages 2468-2474  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000183316500031 Publication Date 2003-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 41 Open Access  
  Notes Approved Most recent IF: 2.115; 2003 IF: 2.146  
  Call Number UA @ lucian @ c:irua:103293 Serial 904  
Permanent link to this record
 

 
Author (up) Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J. url  doi
openurl 
  Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
  Year 2023 Publication Cell reports physical science Abbreviated Journal  
  Volume 4 Issue 7 Pages 101480-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001048074500001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198299 Serial 8893  
Permanent link to this record
 

 
Author (up) Yu, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N. url  doi
openurl 
  Title High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 38 Pages 17939-17946  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supercabatteries have the characteristics of supercapacitors and batteries, namely high power and energy densities as well as long cycle life. To construct them, capacitor electrodes with wide potential windows and/or redox electrolytes are required. Herein, graphite@diamond nano-needles and an aqueous solution of Fe(CN)(6)(3-/4-) are utilized as the capacitor electrode and the electrolyte, respectively. This diamond capacitor electrode has a nitrogen-doped diamond core and a nano-graphitic shell. In 0.05 M Fe(CN)(6)(3-/4-) + 1.0 M Na2SO4 aqueous solution, the fabricated supercabattery has a capacitance of 66.65 mF cm(-2) at a scan rate of 10 mV s(-1). It is stable over 10 000 charge/discharge cycles. The symmetric supercabattery device assembled using a two-electrode system possesses energy and power densities of 10.40 W h kg(-1) and 6.96 kW kg(-1), respectively. These values are comparable to those of other energy storage devices. Therefore, diamond supercabatteries are promising for many industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489646900036 Publication Date 2019-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 26 Open Access  
  Notes ; S. Yu and K. J. Sankaran contributed equally to this work. N. Yang acknowledges funding from the German Science Foundation under the project of YA344/1-1. J. Verbeeck and S. Korneychuk acknowledge the funding from the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. K. J. Sankaran and K. Haenen like to acknowledge the financial support of the Methusalem “NANO” network. S. Yu likes to acknowledge the financial support from fundamental research funds for the central universities (Grant No. SWU019001). ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:163723 Serial 5388  
Permanent link to this record
 

 
Author (up) Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
  Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev  
  Volume 7 Issue 6 Pages 1046-1058  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544175300013 Publication Date 2020-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.6 Times cited 3 Open Access OpenAccess  
  Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved Most recent IF: 20.6; 2020 IF: 8.843  
  Call Number UA @ admin @ c:irua:170776 Serial 6648  
Permanent link to this record
 

 
Author (up) Yu, W.-B.; Hu, Z.-Y.; Yi, M.; Huang, S.-Z.; Chen, D.-S.; Jin, J.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Probing the electrochemical behavior of {111} and {110} faceted hollow Cu2O microspheres for lithium storage Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 97129-97136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transition metal oxides with exposed highly active facets have become of increasing interest as anode materials for lithium ion batteries, because more dangling atoms exposed at the active surface facilitate the reaction between the transition metal oxides and lithium. In this work, we probed the electrochemical behavior of hollow Cu2O microspheres with {111} and {110} active facets on the polyhedron surface as anodes for lithium storage. Compared to commercial Cu2O nanoparticles, hollow Cu2O microspheres with {111} and {110} active facets show a rising specific capacity at 30 cycles which then decreases after 110 cycles during the cycling process. Via advanced electron microscopy characterization, we reveal that this phenomenon can be attributed to the highly active {111} and {110} facets with dangling “Cu” atoms facilitating the conversion reaction of Cu2O and Li, where part of the Cu2O is oxidized to CuO during the charging process. However, as the reaction proceeds, more and more formed Cu nanoparticles cannot be converted to Cu2O or CuO. This leads to a decrease of the specific capacity. We believe that our study here sheds some light on the progress of the electrochemical behavior of transition metal oxides with respect to their increased specific capacity and the subsequent decrease via a conversion reaction mechanism. These results will be helpful to optimize the design of transition metal oxide micro/nanostructures for high performance lithium storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386242500084 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 5 Open Access  
  Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @ c:irua:138199 Serial 4322  
Permanent link to this record
 

 
Author (up) Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L. doi  openurl
  Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 2 Pages 024407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742384700001 Publication Date 2022-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186514 Serial 6991  
Permanent link to this record
 

 
Author (up) Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author (up) Yuan, H.; Debroye, E.; Bladt, E.; Lu, G.; Keshavarz, M.; Janssen, K.P.F.; Roeffaers, M.B.J.; Bals, S.; Sargent, E.H.; Hofkens, J. pdf  url
doi  openurl
  Title Imaging heterogeneously distributed photo-active traps in perovskite single crystals Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 30 Pages 1705494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Delta-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Delta-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 x 10(14) and 8 x 10(13) cm(-3) for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is conduded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000428793600009 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, ZW1509 GOH6316N, postdoctoral fellowships to H.Y., E.D., and K.P.F.J., doctoral fellowship to E.B.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196), and the ERC project LIGHT (GA-307523). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). G.L. acknowledges Key University Science Research Project of Jiangsu Province (No. 17KJA150005). E.H.S. acknowledges support from the Ontario Research Fund – Research Excellence Program. ; ecassara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:150826UA @ admin @ c:irua:150826 Serial 4970  
Permanent link to this record
 

 
Author (up) Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471983500006 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161329 Serial 5425  
Permanent link to this record
 

 
Author (up) Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A. pdf  url
doi  openurl
  Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
  Year 2016 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 40 Issue 40 Pages 4319-4324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375586400038 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269  
  Call Number c:irua:133671 Serial 4027  
Permanent link to this record
 

 
Author (up) Yuan, S.; Pu, Z.; Zhou, H.; Yu, J.; Amiinu, I.S.; Zhu, J.; Liang, Q.; Yang, J.; He, D.; Hu, Z.; Van Tendeloo, G.; Mu, S. pdf  url
doi  openurl
  Title A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values Type A1 Journal article
  Year 2019 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 59 Issue 59 Pages 472-480  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The development of a stable, efficient and economic catalyst for hydrogen evolution reaction (HER) of water splitting is one of the most hopeful approaches to confront the environmental and energy crisis. A two-step method is employed to obtain metal clusters (Ru, N, Pd etc.) combining single cobalt atoms anchored on nitrogen-doped carbon (Ru/Pt/Pd@Co-SAs/N-C). Based on the synergistic effect between Ru clusters and single cobalt atoms, Ru@Co-SAs/N-C exhibits an outstanding HER electrocatalytic activity. Specifically, Ru@Co-SAs/N-C only needs 7 mV overpotential at 10 mA cm(-2) in 1 M KOH solution, which is much better than commercial 20 wt% PVC (40 mV) catalyst. Density functional theory (DFT) calculations further reveal the synergy effect between surface Ru nanoclusters and Co-SAs/N-C toward hydrogen adsorption for HER. Additionally, Ru@CoSAs/N-C also exhibits excellent catalytic ability and durability under acidic and neutral media. The present study opens a new avenue towards the design of metal clusters/single cobalt atoms heterostructures with outstanding performance toward HER and beyond.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463032200051 Publication Date 2019-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 33 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; S.Y., Z.P. and H.Z. contributed equally to this work. This work was financed by the National Natural Science Foundation of China (Grant No. 51372186, 51672204, 51701146) and the Fundamental Research Funds for the Central Universities (WUT: 2017III055, 2018III039GX, 2018IVA095). We express heartfelt thanks to Prof. Gaoke Zhang for the supply of computational resources in the School of Resources and Environmental Engineering, Wuhan University of Technology. ; Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:159330 Serial 5240  
Permanent link to this record
 

 
Author (up) Yuan, X.; Yu, W.; Yu, M.Y.; Chen, Z.Y.; Liu, J.R.; Lu, P.X.; Li, R.X.; Qian, L.J.; Lu, B.D. pdf  doi
openurl 
  Title Long-distance channeling and focusing of lasers in plasmas Type A1 Journal article
  Year 2002 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 66 Issue 5 Pages 381-384  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The propagation of a short laser beam in plasma is investigated analytically Relativistic ponderomotive force and space charge effects are included, and an equation describing the evolution of the laser spot size is derived. It is shown that self-consistent electron cavitation can lead to self channelling and thus long-distance self-focusing of the laser. The condition for the latter to occur is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000179465400008 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.28; 2002 IF: 0.748  
  Call Number UA @ lucian @ c:irua:95120 Serial 1835  
Permanent link to this record
 

 
Author (up) Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
  Year 2023 Publication Chemical communications Abbreviated Journal  
  Volume 59 Issue 47 Pages 7275-7278  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994367000001 Publication Date 2023-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.319  
  Call Number UA @ admin @ c:irua:197291 Serial 8878  
Permanent link to this record
 

 
Author (up) Yue-Feng, Z.; Chao, W.; Wang, W.-Z.; Li, L.; Hao, S.; Tao, S.; Jie, P. doi  openurl
  Title Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure Type A1 Journal article
  Year 2018 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed  
  Volume 67 Issue 8 Pages 085202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H-2 respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443194600017 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 0.624  
  Call Number UA @ lucian @ c:irua:153771 Serial 5120  
Permanent link to this record
 

 
Author (up) Yusupov, M. openurl 
  Title Atomic scale simulations for a better insight in plasma medicine Type Doctoral thesis
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:117837 Serial 188  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. pdf  doi
openurl 
  Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 11 Pages 5993-5998  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000316773000056 Publication Date 2013-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 59 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:107154 Serial 2636  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Behavior of electrons in a dual-magnetron sputter deposition system : a Monte Carlo model Type A1 Journal article
  Year 2011 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue Pages 033018-033018,17  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A Monte Carlo model has been developed for investigating the electron behavior in a dual-magnetron sputter deposition system. To describe the three-dimensional (3D) geometry, different reference frames, i.e. a local and a global coordinate system, were used. In this study, the influence of both closed and mirror magnetic field configurations on the plasma properties is investigated. In the case of a closed magnetic field configuration, the calculated electron trajectories show that if an electron is emitted in (or near) the center of the cathode, where the influence of the magnetic field is low, it is able to travel from one magnetron to the other. On the other hand, when an electron is created at the race track area, it is more or less trapped in the strong magnetic field and cannot easily escape to the second magnetron region. In the case of a mirror magnetic field configuration, irrespective of where the electron is emitted from the cathode, it cannot travel from one magnetron to the other because the magnetic field lines guide the electron to the substrate. Moreover, the electron density and electron impact ionization rate have been calculated and studied in detail for both configurations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000289064600001 Publication Date 2011-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:87544 Serial 224  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. doi  openurl
  Title Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 13 Pages 131502-131502,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A magnetron discharge is characterized by drifts of the charged particles guiding center, caused by the magnetic field, in contrast to unmagnetized discharges. Because of these drifts, a pronounced asymmetry of the discharge can be observed in a dual magnetron setup. In this work, it is found that the shape of the discharge in a dual magnetron configuration depends on the magnetic field configuration. In a closed configuration, strong drifts were observed in one preferential direction, whereas in a mirror configuration the deflection of the discharge was not so pronounced. Our calculations confirm experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289153600017 Publication Date 2011-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:87867 Serial 1026  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Dewaele, D.; Attri, P.; Khalilov, U.; Sobott, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma Type A1 Journal article
  Year 2022 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising technology for several medical applications, including the removal of biofilms from surfaces. However, the molecular mechanisms of CAP treatment are still poorly understood. Here we unravel the possible mechanisms of CAP‐induced oxidation of oligosaccharides, employing reactive molecular dynamics simulations based on the density functional‐tight binding potential. Specifically, we find that the interaction of oxygen atoms (used as CAP‐generated reactive species) with cellotriose (a model system for the oligosaccharides) can break structurally important glycosidic bonds, which subsequently leads to the disruption of the oligosaccharide molecule. The overall results help to shed light on our experimental evidence for cellotriose CAP. This oxidation by study provides atomic‐level insight into the onset of plasma‐induced removal of biofilms, as oligosaccharides are one of the main components of biofilm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865844800001 Publication Date 2022-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; They also acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. This study was financially supported by the Research Foundation–Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 3.5  
  Call Number PLASMANT @ plasmant @c:irua:191404 Serial 7113  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
  Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 15 Issue 8 Pages 1800022  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441895700004 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 9 Pages 093043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000309393400001 Publication Date 2012-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:101014 Serial 189  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 2 Pages 025205-25209  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329108000013 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 51 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:112286 Serial 2823  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 162-171  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000350275400005 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:123540 Serial 1589  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Privat-Maldonado, A.; Cordeiro, R.M.; Verswyvel, H.; Shaw, P.; Razzokov, J.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy Type A1 Journal article
  Year 2021 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 43 Issue Pages 101968  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Multiple cancer therapies nowadays rely on oxidative stress to damage cancer cells. Here we investigated the biological and molecular effect of oxidative stress on the interaction between CD44 and hyaluronan (HA), as interrupting their binding can hinder cancer progression. Our experiments demonstrated that the oxidation of HA decreased its recognition by CD44, which was further enhanced when both CD44 and HA were oxidized. The reduction of CD44–HA binding negatively affected the proliferative state of cancer cells. Our multi-level atomistic simulations revealed that the binding free energy of HA to CD44 decreased upon oxidation. The effect of HA and CD44 oxidation on CD44–HA binding was similar, but when both HA and CD44 were oxidized, the effect was much larger, in agreement with our experiments. Hence, our experiments and computations support our hypothesis on the role of oxidation in the disturbance of CD44–HA interaction, which can lead to the inhibition of proliferative signaling pathways inside the tumor cell to induce cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657371800005 Publication Date 2021-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes Fwo; The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, where all computational work was performed. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:177780 Serial 6750  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture Type A1 Journal article
  Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev  
  Volume 2019 Issue Pages 1-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000492999000001 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.593 Times cited 5 Open Access OpenAccess  
  Notes The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 4.593  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160118 Serial 5180  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Sputter deposition of MgxAlyOz thin films in a dual-magnetron device : a multi-species Monte Carlo model Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 7 Pages 073043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Targetsubstrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000307072500003 Publication Date 2012-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:100100 Serial 3111  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
  Year 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal Bba-Gen Subjects  
  Volume 1861 Issue 1861 Pages 839-847  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397366200012 Publication Date 2017-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.702 Times cited Open Access OpenAccess  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved Most recent IF: 4.702  
  Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Wende, K.; Kupsch, S.; Neyts, E.C.; Reuter, S.; Bogaerts, A. url  doi
openurl 
  Title Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 5761  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report on multi-level atomistic simulations for the interaction of reactive oxygen species (ROS) with the head groups of the phospholipid bilayer, and the subsequent effect of head group and lipid tail oxidation on the structural and dynamic properties of the cell membrane. Our simulations are validated by experiments using a cold atmospheric plasma as external ROS source. We found that plasma treatment leads to a slight initial rise in membrane rigidity, followed by a strong and persistent increase in fluidity, indicating a drop in lipid order. The latter is also revealed by our simulations. This study is important for cancer treatment by therapies producing (extracellular) ROS, such as plasma treatment. These ROS will interact with the cell membrane, first oxidizing the head groups, followed by the lipid tails. A drop in lipid order might allow them to penetrate into the cell interior (e.g., through pores created due to oxidation of the lipid tails) and cause intracellular oxidative damage, eventually leading to cell death. This work in general elucidates the underlying mechanisms of ROS interaction with the cell membrane at the atomic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405746500072 Publication Date 2017-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access OpenAccess  
  Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216 N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. S.R. and S.K. acknowledge funding by the BMBF (FKZ: 03Z2DN12). S.R. acknowledges funding by the Ministry of Education, Science and Culture of the State of Mecklenburg-Vorpommern (AU 15001). The authors thank M. Hammer for the support and discussion in the biophysical studies and J. Van der Paal for the interesting discussions. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:144627 Serial 4630  
Permanent link to this record
 

 
Author (up) Yusupov, M.; Yan, D.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale simulation of H2O2permeation through aquaporin: toward the understanding of plasma cancer treatment Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 12 Pages 125401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H 2 O 2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H 2 O 2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H 2 O 2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H 2 O 2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426378100001 Publication Date 2018-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access OpenAccess  
  Notes MY gratefully acknowledges financial support from the Research Foundation—Flanders (FWO) via Grant No. 1200216N and a travel grant to George Washington University (GWU). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Super- computer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Work at GWU was supported by the National Science Foundation, grant 1465061. RMC thanks FAPESP and CNPq for finan- cial support (Grant Nos. 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:149382 Serial 4811  
Permanent link to this record
 

 
Author (up) Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J. pdf  url
doi  openurl
  Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
  Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol  
  Volume 25 Issue 4 Pages 1254-1261  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Zeist Editor  
  Language Wos 000341871700015 Publication Date 2014-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.659 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.659; 2014 IF: 2.638  
  Call Number UA @ lucian @ c:irua:119896 Serial 1977  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: