|
Record |
Links |
|
Author |
Yu, H.; Kopach, A.; Misko, V.R.; Vasylenko, A.A.; Makarov, D.; Marchesoni, F.; Nori, F.; Baraban, L.; Cuniberti, G. |
|
|
Title |
Confined Catalytic Janus Swimmers in a Crowded Channel: Geometry-Driven Rectification Transients and Directional Locking |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Small |
Abbreviated Journal |
Small |
|
|
Volume |
12 |
Issue |
12 |
Pages |
5882-5890 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
Self-propelled Janus particles, acting as microscopic vehicles, have the potential to perform complex tasks on a microscopic scale, suitable, e.g., for environmental applications, on-chip chemical information processing, or in vivo drug delivery. Development of these smart nanodevices requires a better understanding of how synthetic swimmers move in crowded and confined environments that mimic actual biosystems, e.g., network of blood vessels. Here, the dynamics of self-propelled Janus particles interacting with catalytically passive silica beads in a narrow channel is studied both experimentally and through numerical simulations. Upon varying the area density of the silica beads and the width of the channel, active transport reveals a number of intriguing properties, which range from distinct bulk and boundary-free diffusivity at low densities, to directional “locking” and channel “unclogging” at higher densities, whereby a Janus swimmer is capable of transporting large clusters of passive particles. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Weinheim |
Editor |
|
|
|
Language |
|
Wos |
000389403900010 |
Publication Date |
2016-09-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1613-6810 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.643 |
Times cited |
14 |
Open Access |
|
|
|
Notes |
; H.Y., A.K., and L.B. contributed equally to this work. This work was funded in part by the European Union (ERDF) and the Free State of Saxony via the ESF project InnoMedTec, the DFG cluster for Excellence, the Center for Advancing Electronics Dresden (CfAED), and via the European Research Council under the European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement no. 306277. V.R.M. and A.A.V. acknowledge support from the Odysseus Program of the Flemish Government and the FWO-VI. F.N. is partially supported by the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Grant No. FA9550-14-1-0040, the IMPACT program of the JST, and a Grant-in-Aid for the Scientific Research (A). ; |
Approved |
Most recent IF: 8.643 |
|
|
Call Number |
UA @ lucian @ c:irua:140256 |
Serial |
4453 |
|
Permanent link to this record |