|
Record |
Links |
|
Author |
Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A. |
|
|
Title |
Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Oxidative medicine and cellular longevity |
Abbreviated Journal |
Oxid Med Cell Longev |
|
|
Volume |
2019 |
Issue |
|
Pages |
1-11 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000492999000001 |
Publication Date |
2019-06-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1942-0900 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.593 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). |
Approved |
Most recent IF: 4.593 |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:160118 |
Serial |
5180 |
|
Permanent link to this record |