toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Chiral states in bilayer graphene : magnetic field dependence and gap opening Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 12 Pages 125451-125451,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract At the interface of electrostatic potential kink profiles, one-dimensional chiral states are found in bilayer graphene (BLG). Such structures can be created by applying an asymmetric potential to the upper and the lower layers of BLG. We found the following: (i) due to the strong confinement by the single kink profile, the unidirectional states are only weakly affected by a magnetic field; (ii) increasing the smoothness of the kink potential results in additional bound states, which are topologically different from those chiral states; and (iii) in the presence of a kink-antikink potential, the overlap between the oppositely moving chiral states results in the appearance of crossing and anticrossing points in the energy spectrum. This leads to the opening of tunable minigaps in the spectrum of the unidirectional topological states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295484300016 Publication Date 2011-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92915 Serial 358  
Permanent link to this record
 

 
Author (up) Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G. de A. url  doi
openurl 
  Title Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field Type A1 Journal article
  Year 2011 Publication Nanoscale research letters Abbreviated Journal Nanoscale Res Lett  
  Volume 6 Issue Pages 452,1-452,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000293299800001 Publication Date 2011-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1556-276X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.833 Times cited 4 Open Access  
  Notes ; This work was supported by the Brazilian agency CNPq (Pronex), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and FWO-CNPq. ; Approved Most recent IF: 2.833; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:91745 Serial 3674  
Permanent link to this record
 

 
Author (up) Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. doi  openurl
  Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 12 Pages 4088-4092  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000272395400023 Publication Date 2009-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:80318 Serial 1024  
Permanent link to this record
 

 
Author (up) Zarenia, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magnetotransport in periodically modulated bilayer graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 24 Pages 245426-245426,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetotransport in bilayer graphene in the presence of a weak and periodic potential is investigated in the presence of a perpendicular magnetic field B. The modulation broadens the Landau levels into bands and for weak magnetic fields leads to the well-known Weiss oscillations in their bandwidth and their transport coefficients at very low B and to the Shubnikov-de Haas oscillations at larger B. The amplitude of the Weiss oscillations is severely reduced if the periodic potentials applied to the two layers oscillate out of phase. We also contrast some results with those corresponding to single-layer graphene. Relative to them the flat-band condition and the oscillation amplitude differ substantially, due to the interlayer coupling, and agree only when this coupling is extremely weak. We further show that the Hall conductivity exhibits the well-known steps at half-integer and integer multiples of 4e(2)/h in single-layer and bilayer graphene, respectively, even for very weak magnetic fields. The results are pertinent to weak and periodic corrugations when the potential modulation dominates the strain-induced magnetic modulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305253600012 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CON-GRAN), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99077 Serial 1934  
Permanent link to this record
 

 
Author (up) Zarenia, M.; Vasilopoulos, P.; Pourtolami, N.; Peeters, F.M. url  doi
openurl 
  Title Landau-level dispersion and the quantum Hall plateaus in bilayer graphene Type P1 Proceeding
  Year 2013 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1566 Issue Pages 275-276  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We study the quantum Hall effect (QHE) in bilayer graphene using the Kubo-Greenwood formula. At zero temperature the Hall conductivity sigma(yx) is given by sigma(yx) – 4(N + 1)e(2)/h with N the index of the highest occupied Landau level (LL). Including the dispersion of the LLs and their width, due to e. g. scattering by impurities, produces the plateau of the n = 0 LL in agreement with experimental results on doped samples and similar theoretical results on single-layer graphene plateaus widen with impurity concentration. Further, the evaluated resistivity rho(xx) exhibits a strong, oscillatory dependence on the electron concentration. Explicit results are obtained for delta-function impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000331793000137 Publication Date 2014-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (project CONGRAN) and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:115871 Serial 1770  
Permanent link to this record
 

 
Author (up) Zebrowski, D.P.; Peeters, F.M.; Szafran, B. pdf  doi
openurl 
  Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
  Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 32 Issue 6 Pages 065016  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402405800007 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.305 Times cited Open Access  
  Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305  
  Call Number UA @ lucian @ c:irua:144238 Serial 4646  
Permanent link to this record
 

 
Author (up) Zebrowski, D.P.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Double quantum dots defined in bilayer graphene Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 3 Pages 035434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on sublattices of the layers and that the ground-state wave-function components change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000406284200005 Publication Date 2017-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145758 Serial 4739  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Chen, Y.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Impurity-induced modulations of orders in d-wave superconductors Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 6 Pages 064518,1-064518,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using a model Hamiltonian with competing antiferromagnetic (AFM) and d-wave superconductivity orders, the impurity-induced structures of orders in d-wave superconductors is investigated. We find that the transition between one-dimensional stripe and two-dimensional checkerboardlike modulation around a single nonmagnetic impurity can take place as the strength of the AFM interaction U or the impurity scattering strength V0 is varied. It is also found that the impurity-induced stripe can first transit to checkerboardlike modulation and then disappears with increasing the next-nearest-neighbor hopping strength |t|. Phase diagrams of V0 versus U and |t| for various modulations of the spin order are presented. In addition, the quantum interference effect on the modulations of orders due to two strong nonmagnetic impurities is briefly examined, and the checkerboardlike and quasistripe patterns can occur depending on the sites where two impurities are placed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000269638800074 Publication Date 2009-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78293 Serial 1572  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 1 Pages 014522  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000341233800010 Publication Date 2014-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119266 Serial 1938  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 214504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355647100003 Publication Date 2015-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126433 Serial 2089  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 094516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362081000002 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132467 Serial 4203  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Covaci, L.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Proximity-induced pseudogap in mesoscopic superconductor/normal-metal bilayers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 14 Pages 140502-140502,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent scanning tunneling microscopy (STM) measurements of the proximity effect in Au/La2−xSrxCuO4 and La1.55Sr0.45CuO4/La2−xSrxCuO4 bilayers showed a proximity-induced pseudogap [O. Yuli, I. Asulin, Y. Kalcheim, G. Koren, and O. Millo, Phys. Rev. Lett. 103, 197003 (2009)]. We describe the proximity effect in mesoscopic superconductor/normal-metal bilayers by using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian with competing antiferromagnetic and d-wave superconductivity orders. The temperature-dependent local density of states is calculated as a function of the distance from the interface. Bound state due to both d-wave and spin-density wave gaps are formed in the normal metal for energies less than the respective gaps. If there is a mismatch between the Fermi velocities in the two layers we observe that these states will shift in energy when spin-density wave order is present, thus inducing a minigap at finite energy. We conclude that the STM measurement in the proximity structures is able to distinguish between the two scenarios proposed for the pseudogap (competing or precursor to superconductivity).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282507200002 Publication Date 2010-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Natural Science Foundation of China under Grants No. 10904089 and No. 60971053, by the Research Fund of Higher Education of China under Grant No. 20093108120005, by Shanghai Leading Academic Discipline project under Grant No. S30105, by Science and Technology Committee of Shanghai Municipal under Grant No. 09JC1406000, by Shanghai Municipal Education Committee under Grants No. shu-08053 and No. 10zz63, and by Innovation Funds of Shanghai University. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85028 Serial 2735  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave superconducting loops Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages 132501-132501,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting loops, containing impurities and surface defects, by numerically solving the Bogoliubovde Gennes equations self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295713600002 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Science Foundation of China (Grant Nos. 10904089 and 60971053), and by research funds under Grant Nos. 20093108120005, S30105, 09JC1406000, and 10zz63. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92811 Serial 1623  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Magnetic flux periodicity in mesoscopic d-wave symmetric and asymmetric superconducting loops Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 14 Pages 144501,1-144501,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic flux dependence of energy and supercurrent in mesoscopic d-wave symmetric and asymmetric superconducting loops is investigated by numerically solving the Bogoliubov-de Gennes equations self-consistently. For square loops, we find an hc/e-flux periodicity in energy and supercurrent and demonstrate that the flux periodicity is sensitive to the hole size and the superconducting pairing strength as well as temperature. The hc/2e-periodic behavior can be restored almost entirely when we displace the central hole sufficiently out of the center of the sample. In rectangular loops, the discrete current-carrying low-energy spectrum can exist for an odd winding number of the order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271351500085 Publication Date 2009-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79994 Serial 1879  
Permanent link to this record
 

 
Author (up) Zha, G.-Q.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Vortex-antivortex dynamics in mesoscopic symmetric and asymmetric superconducting loops with an applied ac current Type A1 Journal article
  Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 108 Issue 5 Pages 57001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the dynamics of vortex-antivortex (V-Av) pairs in mesoscopic symmetric and asymmetric superconducting loops under an applied ac current. In contrast to the case of a constant biasing dc current, the process of the V-Av collision and annihilation is strongly affected by the time-periodic ac signal. As the direction of the applied ac current is reversed, the existed V-Av pair moves backward and then collides with a new created Av-V pair in a symmetric loop. In the presence of an appropriate external magnetic field, a novel sinusoidal-like oscillatory mode of the magnetization curve is observed, and the periodic dynamical process of the V-Av annihilation occurs in both branches of the sample. Moreover, for the asymmetric sample with an off-centered hole the creation point of the V-Av pair shifts away from the center of the sample, and the creation and annihilation dynamics of V-Av pairs turns out to be very different from the symmetric case. Copyright (C) EPLA, 2014  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000346792400027 Publication Date 2014-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 4 Open Access  
  Notes ; We are grateful to GOLIBJON BERDIYOROV for useful discussions. This work was supported by NSF China under Grant Nos. 61371020 and 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2014 IF: 2.095  
  Call Number UA @ lucian @ c:irua:122800 Serial 3851  
Permanent link to this record
 

 
Author (up) Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115423-115429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802810700002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188660 Serial 7125  
Permanent link to this record
 

 
Author (up) Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author (up) Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 14 Pages 144501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325498300004 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111145 Serial 3891  
Permanent link to this record
 

 
Author (up) Zhang, L.-F.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tomasch effect in nanoscale superconductors Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 024508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348473700003 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123864 Serial 3670  
Permanent link to this record
 

 
Author (up) Zhang, L.-F.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Position-dependent effect of non-magnetic impurities on superconducting properties of nanowires Type A1 Journal article
  Year 2015 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 109 Issue 109 Pages 17010  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Anderson's theorem states that non-magnetic impurities do not change the bulk properties of conventional superconductors. However, as the dimensionality is reduced, the effect of impurities becomes more significant. Here we investigate superconducting nanowires with diameter comparable to the Fermi wavelength $\lambda_F$ (which is less than the superconducting coherence length) by using a microscopic description based on the Bogoliubov-de Gennes method. We find that: 1) impurities strongly affect the superconducting properties, 2) the effect is impurity position dependent, and 3) it exhibits opposite behavior for resonant and off-resonant wire widths. We show that this is due to the interplay between the shape resonances of the order parameter and the subband energy spectrum induced by the lateral quantum confinement. These effects can be used to manipulate the Josephson current, filter electrons by subband and investigate the symmetries of the superconducting subband gaps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000348592100029 Publication Date 2015-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 1.957; 2015 IF: 2.095  
  Call Number UA @ lucian @ c:irua:128424 Serial 4227  
Permanent link to this record
 

 
Author (up) Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M. pdf  doi
openurl 
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 21 Pages 215202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000428920200001 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968  
Permanent link to this record
 

 
Author (up) Zhang, S.-H.; Yang, W.; Peeters, F.M. url  doi
openurl 
  Title Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 20 Pages 205437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000433026700005 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047  
Permanent link to this record
 

 
Author (up) Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075443-75445  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315375200008 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107655 Serial 2622  
Permanent link to this record
 

 
Author (up) Zhang, S.H.; Xu, W.; Peeters, F.M.; Badalyan, S.M. url  doi
openurl 
  Title Electron energy and temperature relaxation in graphene on a piezoelectric substrate Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 19 Pages 195409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the energy and temperature relaxation of electrons in graphene on a piezoelectric substrate. Scattering from the combined potential of extrinsic piezoelectric surface acoustical (PA) phonons of the substrate and intrinsic deformation acoustical phonons of graphene is considered for a (non) degenerate gas of Dirac fermions. It is shown that in the regime of low energies or temperatures the PA phonons dominate the relaxation and change qualitatively its character. This prediction is relevant for quantum metrology and electronic applications using graphene devices and suggests an experimental setup for probing electron-phonon coupling in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336000400008 Publication Date 2014-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117675 Serial 928  
Permanent link to this record
 

 
Author (up) Zhang, Z.; Partoens, B.; Chang, K.; Peeters, F.M. url  doi
openurl 
  Title First-principles study of transition metal impurities in Si Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 15 Pages 155201,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000255457400057 Publication Date 2008-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 72 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:68846 Serial 1221  
Permanent link to this record
 

 
Author (up) Zhang, Z.Z.; Peeters, F.M. url  doi
openurl 
  Title Tuning of energy levels and optical properties of graphene quantum dots Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages 235411,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000257289500101 Publication Date 2008-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 228 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69638 Serial 3750  
Permanent link to this record
 

 
Author (up) Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Plasmon and coupled plasmon-phonon modes in graphene in the presence of a driving electric field Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 19 Pages 195447  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the plasmon and coupled plasmon-phonon modes induced by intraband electron-electron interaction in graphene in the presence of driving dc electric field. We find that the electric field dependence of these collective excitation modes in graphene differs significantly from that in a conventional two-dimensional electron gas with a parabolic energy spectrum. This is due mainly to the fact that graphene has a linear energy spectrum and the Fermi velocity of electrons in graphene is much larger than the drift velocity of electrons. The obtained results demonstrate that the plasmon and coupled plasmon-phonon modes in graphene can be tuned by applying not only the gate voltage but also the source-to-drain field. The manipulation of plasmon and coupled plasmon-phonon modes by source-to-drain voltage can let graphene be more conveniently applied as an advanced plasmonic material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336841000007 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Chinese Academy of Sciences, and by the National Natural Science Foundation of China (Grant No. 11247002). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117764 Serial 2642  
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
  Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 280 Issue 280 Pages 45-49  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000439059600008 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved Most recent IF: 1.554  
  Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024  
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Li, L.L.; Zhang, C.; Peeters, F.M. doi  openurl
  Title Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Perot cavity Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 223104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum-and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Perot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic-or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000356176100004 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. F.M.P. was a specially appointed Professor for foreign expert at the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:127076 Serial 3507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: