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Abstract. We study the quantum Hall effect (QHE) in bilayer graphene using the Kubo-Greenwood formula. At zero
temperature the Hall conductivity σyx is given by σyx = 4(N + 1)e2/h with N the index of the highest occupied Landau
level (LL). Including the dispersion of the LLs and their width, due to e.g. scattering by impurities, produces the plateau of the
n = 0 LL in agreement with experimental results on doped samples and similar theoretical results on single-layer graphene
plateaus widen with impurity concentration. Further, the evaluated resistivity ρxx exhibits a strong, oscillatory dependence on
the electron concentration. Explicit results are obtained for δ -function impurities.
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INTRODUCTION

Charge carriers in single-layer graphene behave like rela-
tivistic, chiral massless particles with a light speed equal
to the Fermi velocity (∼ 106 m/s) and possess a gapless
spectrum that is linear in the wave vector near the K and
K′ points. In contrast, charge carriers in bilayer graphene
are massive particles.

When a sufficiently clean single-layer graphene
sheet is subjected to high magnetic fields, it ex-
hibits a half-integer quantum Hall effect (QHE),
σyx = 4(N + 1/2)e2/h̄, that is very different from the
conventional one σyx = 2(N+1)e2/h̄ in semiconductors,
with N the index of the highest occupied LL. In contrast,
in bilayer graphene we have σyx = 4(N +1)e2/h̄. So far
several experiments have confirmed the appearance of
the corresponding Hall plateaux at relatively high mag-
netic fields but also the existence of additional plateaux
especially at zero gate voltage or electron concentration
[1]. There can be various reasons for the n=0 LL plateau,
e.g., electron-electron interaction [2]. In a previous paper
[3] it was shown that the inclusion of the dispersion of
the LLs and of their width, due to scattering by impuri-

FIGURE 1. Energy dispersion of a few LLs vs ky�c in bilayer
graphene.

ties, produces the plateau of the n = 0 LL in single-layer
graphene because this scattering lifts the degeneracy
of the spectrum with respect to the wave vector. Here
we show that the same mechanism applies to bilayer
graphene and produces the plateau of the corresponding
n = 0 LL in agreement with experimental results [1]. We
outline the formalism and present the results in Sec. II.

MODEL AND MAIN RESULTS

We describe charge carriers in bilayer graphene, in a per-
pendicular magnetic field B, using a 4× 4 Hamiltonian.
The eigenvalues, given in Ref. [4], are

εn,s1,s2
= s1

{
t2
c +2n+1+ s2

√
[t4

c +2(2n+1)t2
c +1]

}1/2

;

(1)
here n= 0,1,2, ..., s1 =±1, s2 =±1, and tc = t/21/2 with
t being the interlayer coupling. For s1 = 1(−1) Eq. (1)
gives the electron (hole) energy levels. Setting tc = 0 in
Eq. (1) gives the energy levels in single-layer graphene.

Within linear response theory the Hall conductivity
σyx can be written in the form [3]

σμν =
ih̄e2

S0
∑

ζ �=ζ ′

( fζ − fζ ′)vνζ ζ ′vμζ ′ζ
(Eζ −Eζ ′)(Eζ −Eζ ′ + iΓζ )

, (2)

where S0 is the area, vν ,μζ ζ ′ the matrix elements of the
velocity operator, μ ,ν = x,y, and fζ = f (Eζ ) the Fermi-
Dirac distribution function. Further, Γ is the LL width,
β = 1/kBT , and T is the temperature. To evaluate σyx
we use Eq. (1) and the eigenfunctions of Ref. [4]. In
the gauge A = (0,Bx,0) the latter are given by Ψ =
[ϕa(x), iϕb(x),ϕc(x), iϕd(x)]T eikyy/

√
Ly with T denoting

the transpose and ϕi(x) the oscillator functions.

The Physics of Semiconductors
AIP Conf. Proc. 1566, 275-276 (2013); doi: 10.1063/1.4848392

©   2013 AIP Publishing LLC 978-0-7354-1194-4/$30.00

275



FIGURE 2. Hall conductivity σyx vs electron concentration
ne, with the energy correction included, for three magnetic
fields B= 8,11, and 14 T. Notice the plateau centered at ne = 0.
If this correction is neglected, the plateau at ne = 0 disappears
as shown in the inset.

FIGURE 3. Hall resistivity ρxy vs magnetic field B for three
electron concentrations ne at T = 2 K.

Scattering by impurities also leads to a ky-
dependent shift or energy correction ΔĒn,s1,s2,ky =
〈n,s1,s2,ky|U(r)|n,s1,s2,ky〉 of the eigenvalues given
by Eq. (1), where U(r) is the impurity potential, see
also Ref. [3] for single-layer graphene. With ξ = ky�c,

�c =
√

h̄/eB the magnetic length, and C = V0/�cLy the
result for δ -function potentials U(r) = V0δ (x)δ (y) is
(for n > 0)
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where C ≈ 2h̄vF/lc
√

A, with A being a dimensionless
parameter that depends on the density of impurities
and their potential [5], kn,s = (ε2

n,s −2n)/tεn,s and

dn,s =
[
k2

n,s[1+2(n+1)/ε2
n,s]+1+2n/ε2

n,s
]−1/2

with
s = {s1,s2}. For n = 0 we obtain the simpler result

ΔĒ0,s,ky ≈Ce−ξ 2
/
√

π in which assuming t2 
 1 lead to
the same results for all s1 =±1, s2 =±1 cases. Equation
(3) shows that the ky degeneracy of the discrete LLs
given by Eq. (1) is lifted, i.e., the LLs become narrow

FIGURE 4. Longitudinal resistivity ρxx vs electron concen-
tration for a field B = 10 T and T = 2 K.

bands. We show that more clearly in Fig. 1 in which we
plot a few LLs vs ky�c. A major consequence of Eq. (3)
is the plateau centered at ne = 0 and shown in Fig. 2 in
which we plot the Hall conductivity σyx vs the electron
concentration ne for three magnetic fields B = 8,11, and
14 T. Without the energy correction this plateau disap-
pears as shown in the inset. The plateau behaviour in
Fig. 2 also shows up when we plot σyx or the resistivity
ρyx vs B for different electron concentrations. We show
that in Fig. 3 for ρyx and three electron concentrations at
T = 2 K.

In Fig. 4 we plot the longitudinal resistivity ρxx vs the
electron concentration ne for a magnetic field B = 10 T
and T = 2 K. The other parameters are A = 90, screen-
ing wave vector qs = 1 nm−1, and impurity concentration
ni = 10−4 nm−2. The resistivity oscillates with the elec-
tron concentration as expected.

In summary we investigated the electron scattering
by impurities on the Hall conductivity (σyx) in bilayer
graphene, at low temperatures. This includes the correc-
tion ΔEn,s,ky , given by Eq. (3), to the energy levels which
becomes significant for n = 0 LL. This inclusion and the
symmetry between electrons and holes give rise to the
n = 0 Hall plateau. In addition, we showed that the lon-
gitudinal resistivity (ρxx) oscillates with electron concen-
tration where the peaks values and the period of oscilla-
tions are linked to the scattering potential values.
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3. P. M. Krstajić et al., Phys. Rev. B 83, 075427 (2011).
4. M. Zarenia et al., Phys. Rev. B 85, 075427 (2012).
5. Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).

276



AIP Conference Proceedings is copyrighted by AIP Publishing LLC (AIP). Reuse of AIP
content is subject to the terms at: http://scitation.aip.org/termsconditions. For more
information, see http://publishing.aip.org/authors/rights-and-permissions.


