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Magnetotransport in periodically modulated bilayer graphene
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Magnetotransport in bilayer graphene in the presence of a weak and periodic potential is investigated in the
presence of a perpendicular magnetic field B. The modulation broadens the Landau levels into bands and for
weak magnetic fields leads to the well-known Weiss oscillations in their bandwidth and their transport coefficients
at very low B and to the Shubnikov–de Haas oscillations at larger B. The amplitude of the Weiss oscillations
is severely reduced if the periodic potentials applied to the two layers oscillate out of phase. We also contrast
some results with those corresponding to single-layer graphene. Relative to them the flat-band condition and
the oscillation amplitude differ substantially, due to the interlayer coupling, and agree only when this coupling
is extremely weak. We further show that the Hall conductivity exhibits the well-known steps at half-integer
and integer multiples of 4e2/h in single-layer and bilayer graphene, respectively, even for very weak magnetic
fields. The results are pertinent to weak and periodic corrugations when the potential modulation dominates the
strain-induced magnetic modulation.
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I. INTRODUCTION

There exist many magnetotransport studies of the two-
dimensional electron gas (2DEG) subject to periodic
potential1,2 or magnetic modulations3,4 and to an external,
mostly perpendicular to the 2DEG, magnetic field B [see
Ref. 2 for more references]. The interest results mainly from
the fact that the modulation broadens the Landau levels
(LLs) into bands and for weak magnetic fields leads to the
well-known Weiss or commensurability oscillations in their
bandwidth and their transport coefficients at very low B and
to the usual Shubnikov–de Haas oscillations at larger B.
These Weiss oscillations are periodic in 1/B and reflect the
commensurability between the externally imposed period of
the modulation and the diameter of the electron orbit at the
Fermi level.

After the discovery of graphene5 similar studies appeared
for single-layer graphene.6,7 The qualitative behavior of
the Weiss oscillations was found to be the same but an
enhancement of their amplitude was predicted.6 These studies,
however, were limited in number and were only partial. In fact,
the longitudinal and transverse resistivities, as a function of B,
oscillate in antiphase with each other. With the exception of
Ref. 7 this aspect as well the oscillations in the Hall resistivity
were not sufficiently addressed. Surprisingly, similar studies
pertinent to bilayer graphene are, to our knowledge, absent.

Relatively recently single-layer graphene, subject to pe-
riodic corrugations, was studied in several papers.8,9 The
corrugation induces a potential modulation as well as a
magnetic modulation8 due to the stress. In these tight-binding
treatments of corrugations almost invariably only the potential
or the magnetic modulation was taken into account. Again,
similar studies for bilayer graphene are, to our knowledge,
absent.

In this paper we study magnetotransport in bilayer graphene
in the presence of a weak and periodic potential modulation
and of a perpendicular magnetic field B. Given the similarity
between potential and magnetic modulations3,10 the results
can be useful to periodic corrugations as well. Moreover,

we critically contrast the results for single-layer and bilayer
graphene and show that the well-known plateaus in the Hall
resistivity for strong fields B also occur for very weak B.

The paper is organized as follows. In Secs. II and III
we present results for unmodulated and modulated bilayer
graphene, respectively. Analytical and numerical results for
the conductivities follow in Sec. IV and concluding remarks
in Sec. V.

II. UNMODULATED BILAYER GRAPHENE

The one-particle Hamiltonian for bilayer graphene is given
by11

H0 =

⎛
⎜⎜⎜⎝

0 π t 0

π † 0 0 0

t 0 0 π †

0 0 π 0

⎞
⎟⎟⎟⎠ . (1)

Here, t ≈ 400 meV is the interlayer coupling, B the external
magnetic field perpendicular to the layers, (h̄/eB)1/2 = lB
the magnetic length, vF the Fermi velocity, and π and
π † the momentum operators π = −ih̄vF [d/dx + id/dy −
(eB/h̄)x], π † = −ih̄vF [d/dx − id/dy + (eB/h̄)x] written in
the Landau gauge A = (0,Bx,0) for the vector potential A.
The eigenstates of Eq. (1) are four-component spinors,

� = 1√
Ly

⎛
⎜⎜⎜⎝

ϕa(x)

iϕb(x)

ϕc(x)

iϕd (x)

⎞
⎟⎟⎟⎠ eikyy, (2)

with ky the wave vector. The solution of Hψ = Eψ is given in
Appendix A in terms of the dimensionless units x → lBky +
x/lB , ε = (lB/h̄vF )E, t → (lB/h̄vF )t . The eigenvalues of the
Hamiltonian (1) are

ε = s1{t2/2 + 2n + 1 + s2

√
t4/4 + (2n + 1)t2 + 1}1/2,

(3)
n = 0,1,2, . . . .

245426-11098-0121/2012/85(24)/245426(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.245426


M. ZARENIA, P. VASILOPOULOS, AND F. M. PEETERS PHYSICAL REVIEW B 85, 245426 (2012)

FIG. 1. (Color online) The energy spectrum of bilayer graphene
as a function of an external magnetic field. The upper band is obtained
for s2 = 1 and the lower one for s2 = −1. The horizontal solid and
dashed lines show the Fermi level EF with the corresponding values
of the electron density ne.

with s1 = ±1 and s2 = ±1 denoting the energy bands. For
s1 = 1(−1) Eq. (3) gives the electron (hole) energy levels. If we
set t = 0 in Eq. (3) we obtain the energy levels in single-layer
graphene. Notice that in obtaining Eq. (3) we neglected the
Zeeman term because it is negligibly small in graphene, of the
order of 0.5 meV for B = 10 T.

Some of the energy levels resulting from Eq. (3), with
s1 = 1, are plotted in Fig. 1 for weak magnetic fields B,
t = 400 meV, and two values of the electron density ne as
specified. The horizontal solid and dashed lines show the Fermi
level EF . As can be seen, the higher group of LLs (s2 = 1) is
occupied for relatively high densities. Intentionally we chose
a ne value that is about 20% higher than a recently reported
experimental value.12

The corresponding eigenstates and their normalization are
obtained in Appendix A [cf. Eqs. (A5)–(A14)], following the
approach of Ref. 13. Rewritten here for convenience they read

ϕa = Ne−x2/2Hn(x), ϕb = −(2n/ε)Ne−x2/2Hn−1(x),
(4)

ϕc = knNe−x2/2Hn(x), ϕd = (kn/ε)Ne−x2/2Hn+1(x),

with kn = (ε2 − 2n)/tε, Hn(x) the Hermite polynomial, and
N a normalization factor given by Eq. (A14).

III. MODULATED BILAYER GRAPHENE

In the presence of weak and periodic potentials V1(x) and
V2(x) applied to the two layers, the total Hamiltonian becomes

H = H0 + V , where V is the matrix

V =

⎛
⎜⎜⎜⎝

V1(x) 0 0 0

0 V1(x) 0 0

0 0 V2(x) 0

0 0 0 V2(x)

⎞
⎟⎟⎟⎠ . (5)

We consider three cases: (i) V1(x) = V2(x) = V0 cos(Kx),
(ii) V1(x) = V0 cos(Kx), V2(x) = 0, and (iii) V1(x) =
−V2(x) = V0 cos(Kx), K = 2π/a. These cases are schemat-
ically depicted at the top of Fig. 3. In all of them V0 � EF

is the amplitude of the modulation and a the period of the
modulation. Case (iii) represents a system of kink-antikink
potentials that results in an energy spectrum exhibiting chiral
states.14

Using the eigenfunctions of Eq. (1) and first-order pertur-
bation theory we obtain

�En,s,ky
= V0 cos(Kx0)e−u/2Gn,s, (6)

where u = K2l2
B/2, x0 = l2

Bky . For cases (i) and (iii), denoted
below by G+

n,s and G−
n,s , respectively, we have

G±
n,s = d2

n,s

{(
1 ± k2

n,s

)
Ln(u) + (

2n
/
ε2
n,s

)
Ln−1(u)

± [
2(n + 1)k2

n,s

/
ε2
n,s

]
Ln+1(u)

}
, (7)

with s = {s1,s2}, dn,s = [k2
n,s[1 + 2(n + 1)/ε2

n,s] + 1 + 2n/

ε2
n,s]

−1/2, and Ln(u) are the Laguerre polynomials. For case
(ii) we have the simpler result

Gn,s = d2
n,s

{
Ln(u) + (

2n
/
ε2
n,s

)
Ln−1(u)

}
. (8)

The result for single-layer graphene6 is obtained from Eq. (8)
with the changes d2

n,s → 1/2 and 2n/ε2
n,s → 1. The perturbed

eigenvalues read

En,s,ky
= En,s + �En,s,ky

, (9)

where �En,s,ky
is given by Eq. (6) with appropriate Gn,s for

cases (i)–(iii), and En,s = (h̄vF / lB)εn,s with εn,s given by
Eq. (3). Notice that Eqs. (7) and (8) are valid for n � 1, as
well as for n = 0, with ε �= 0. For n = 0 and ε = 0, G0,±,−
can be obtained using the wave spinors (B1) and (B2); the
results are

G0,+,− = [2L0(u) ± t2L1(u)]/(t2 + 2), G0,−,− = ±L0(u),

(10)

where the addition (+) and subtraction (−) signs correspond to
cases (i) and (iii), respectively. For case (ii) we have G0,+,− =
2L0(u) and G0,−,− = 0.

The bandwidth (6) for case (i) is plotted in Fig. 2(a)
versus (weak) field B for the parameters shown in the figure.
The dashed and solid curves correspond to single-layer and
bilayer graphene. The large-amplitude oscillations are the
Weiss or commensurability oscillations. The steplike structure,
visible for B � 0.2 T, is due to the usual Shubnikov–de Haas
oscillations. As can be seen, the single-layer bandwidth is
larger than that of the bilayer; this depends mainly on the value
of t . Notice that the minima and maxima of the two cases occur
at different values of B. This is due to the fact that the flat-band
condition (�En,s,ky

= 0) differs substantially between the two
cases [see Eq. (7) above and the text that follows]. This is
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FIG. 2. (Color online) (a) The LL bandwidth at the Fermi energy
as a function of the external magnetic field B for the parameters
shown. The dashed red and solid blue curves are for monolayer
and bilayer graphene, respectively. (b)–(d) show the bandwidth for
different values of the interlayer coupling t as specified. For very
small t , corresponding to nearly uncoupled layers, monolayer and
bilayer results nearly coincide.

further reflected in Figs. 2(b)–2(d), where the region 0 � B �
0.4 T is plotted again for three different values of t . As shown in
Fig. 2(d), for very small t , corresponding to nearly uncoupled
layers, monolayer and bilayer results nearly coincide.

The LL bandwidth is also influenced by the phase between
the potentials V1(x) and V2(x): We show this influence in
Fig. 3, where we plot the bandwidth versus (weak) field B for
cases (i)–(iii) mentioned above and schematically depicted at
the top of the figure. Comparing curves (i) and (iii) makes clear
that a phase shift (by π ) between V1(x) and V2(x) changes the
oscillation period and leads to an extremely severe reduction of
the bandwidth; this reflects the fact that the “average” potential

FIG. 3. (Color online) (a) The LL bandwidth at the Fermi energy,
in bilayer graphene, as a function of the external magnetic field B

for the parameters shown in the inset. The curves (i), (ii), and (iii)
correspond to the potentials V1(x) and V2(x), as specified in the text
and schematically depicted at the top of the figure.

applied to the bilayer is zero. This reduction is much less
drastic if the phase shift is less than π or if only one layer is
modulated, as shown by curve (ii), in which case the oscillation
period remains the same.

For n � 1, i.e., for weak magnetic fields, we have εn � 1
and we can use the asymptotic expression of the Laguerre poly-
nomials Ln(u) → (eu/2/

√
π

√
nu) cos(2

√
nu − π/4). Then

for case (i) the extrema of the bandwidth are given by

Bex =
2
√

E2
F + EF t

a(i + j/4)
, i = 0,1,2, . . . , (11)

with j = 1 for the maximum and j = 3 for the minimum.
Note that this expression becomes the bandwidth
extrema in single-layer graphene when t = 0. For the
parameters shown in Fig. 2, i.e., ne = 3 × 10−11 cm−2,
a = 350 nm, V0 = 0.5 meV, and t = 400 meV, we obtain
the magnetic field values for zero bandwidth Bmin(T ) =
0.111,0.123,0.137,0.155,0.178,0.209, . . . and for maximum
bandwidth Bmax(T ) = 0.117,0.13,0.145,0.165,0.192,

0.229, . . .. These values agree very well with those for the
maxima and minima in the bandwidth shown in Fig. 2(a) that
were obtained without using the asymptotic expression of
the Laguerre polynomials. The behavior of the bandwidth for
cases (ii) and (iii) is similar.

A. Density of states

The density of states (DOS) D(E) is given by D(E) =
(1/2π )

∑
n,s

∫
dky δ(E − En,s,ky

), where En,s,ky
are the energy

levels given by Eq. (9). To calculate it numerically we assume
a Lorentzian broadening of zero shift and of width 	. Since
we focus on very weak magnetic fields, it is sufficient to take
	 constant. We then have

D(E)/D0 = 1

4π2E

(
h̄vF

lB

)2 ∑
n,s

∫ 2π

0

× 	dθ

	2 + [E − En,s − V0e−u/2Gn,s cos θ ]2
,

(12)

where D0 = E/π (h̄vF )2 and θ = (2πl2
B/a)ky . Formally the

same expression holds for single-layer graphene with appro-
priate changes to En,s and Gn,s . For our numerical calculation
we took 	 = 0.04 meV.

In Figs. 4(a) and 4(b) we plot the DOS for single-layer
and case (i) bilayer graphene for fixed B = 0.1 T; the other
parameters are shown in the inset of Fig. 4(a). In both panels
one sees the expected van Hove singularities (i.e., the double
peak structure). In contrast with the modulated 2DEG, the
peaks are not equidistant due to the difference in the energy
spectra. This is more pronounced in Fig. 4(a) due to the absence
of the interlayer coupling and the rather large value of t [cf.
Eq. (3)]. In Figs. 4(c) and 4(d) we plot the DOS versus the field
B for fixed energy E = 20 meV. In both cases the peaks are
due to the van Hove singularities that are present at the edges
of the modulation-broadened LLs. As can be seen, the peaks
in the DOS of bilayer graphene occur at higher values of B.
This is also reflected in the Hall and collisional conductivities
of the next section.
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FIG. 4. (Color online) Density of states (in units of the zero-
magnetic-field value D0) of single-layer (upper panels) and bilayer
[lower panels, case (i)] graphene. (a) and (b) show the DOS as
a function of energy for B = 0.1 T, whereas (c) and (d) show it
as function of the magnetic field B for E = 20 meV. The other
parameters are shown in (a).

IV. CONDUCTIVITIES

A. Diffusive conductivity

In the formalism followed in Ref. 2 the dc diffusive or band
conductivity is given by

σ dif
μν = 4βe2

LxLy

∑
ζ

fζ (1 − fζ )τζ vμζ vνζ . (13)

Here μ,ν = x,y, β = 1/kBT , |ζ 〉 ≡ |n,s,ky〉, fζ ≡ f (Eζ )
is the Fermi-Dirac distribution, Eζ the eigenvalue, τζ the
relaxation time, and vμζ the diagonal matrix element of the
velocity operator. The designation diagonal or off-diagonal
refers to the eigenstates (2) and not to μ = ν or μ �= ν. The
factor 4 in Eq. (13) accounts for valley and spin degeneracy.
Note that Eq. (13) is valid only for elastic or quasielastic
scattering. Further,

vy,ζ ≡ vy,n,s,ky
= (∂En,s,ky

/h̄∂ky)

= −(2V0/h̄K)ue−u/2 sin(Kx0)Gn,s. (14)

Since 〈ψ |vx |ψ〉 = vx = 0, the diffusive components σ dif
xx

and σ dif
xy vanish identically. Due to the modulation, though,

which broadens the LLs into bands, the component σ dif
yy does

not vanish. Substituting vy,ζ in Eq. (13) and integrating over
ky (0 � ky � Lx/�

2
B) the result for it is

σ dif
yy = 4e2

h

V 2
0 τ

h̄
ue−u

∑
n=1,s

G2
n,s[−∂f (E)/∂E]E=En,s

, (15)

where τ = μEF /ev2
F with μ ≈ 7 × 103 cm2/V s a typical

value for the bilayer graphene mobility.15

For case (i) Eq. (15), with σ dif
yy ≡ σyy , is plotted in Fig. 5

for (a) monolayer and (b) bilayer graphene, at temperatures
T = 2 and 6 K. The parameters are shown in Fig. 5(b) and
are the same with those in Fig. 5(a). The insets show σyy for
a higher electron density (ne = 7 × 1012/cm2) for which both
groups of LLs are occupied (cf. Fig. 1). At low B we see the
Weiss or commensurability oscillations, whereas at higher B

FIG. 5. (Color online) Diffusive conductivity σyy , as a function
of the external magnetic field B, for (a) monolayer and (b) bilayer
graphene [case (i)] at temperatures T = 2 and 6 K. The insets show
σyy for a higher electron density for which both groups of LLs are
occupied (cf. Fig. 1).

the usual Shubnikov–de Haas oscillations start to appear, the
former enveloping the latter. Again the amplitude in monolayer
graphene is mostly larger than that in bilayer graphene.

The behavior of σ dif
yy for different potentials V1(x) and V2(x)

applied to the two layers of bilayer graphene is similar to that
in Fig. 5(b). We show that in Fig. 6, where we contrast the
three cases depicted at the top of Fig. 3. As can be seen, the
reduction of σ dif

yy follows that of the bandwidth shown in Fig. 3.

FIG. 6. (Color online) As in Fig. 5(b) for different potentials V1(x)
and V2(x) applied to the two layers of bilayer graphene and specified
after Eq. (5) and in the figure. The temperature is T = 2 K.
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B. Hall conductivity

Within linear response theory the Hall conductivity is given by2

σnd
yx = 4ih̄e2

LxLy

∑
ζ �=ζ ′

fζ (1 − f ′
ζ )[1 − eβ(Eζ −Eζ ′ )]

〈ζ |vx |ζ ′〉〈ζ ′|vy |ζ 〉
(Eζ − Eζ ′)2

, (16)

where 〈ζ |vx |ζ ′〉 and 〈ζ ′|vy |ζ 〉 are the off-diagonal matrix elements of the velocity operator. They are evaluated with the help of
the corresponding operators vx = ∂H0/∂px and vy = ∂H0/∂py , given explicitly by

vx = vF

(
σx 0

0 σx

)
, vy = vF

(−σy 0

0 σy

)
, (17)

with σμ being the Pauli matrices. The results are

〈ζ |vx |ζ ′〉 ≡ 〈n,s,ky |vx |n′,s ′,ky〉

= −ivF lB2nn!
√

π
Nn,sNn′,s ′

εn,sεn′,s ′
{[2(n + 1)εn′,s ′kn,skn′,s ′ + 2n′εn,s]δn,n′−1 − [εn,skn,skn′,s ′ + εn′,s ′ ]δn,n′+1}, (18)

〈ζ ′|vy |ζ 〉 ≡ 〈n′,s ′,ky |vy |n,s,ky〉

= vF lB2n′
n′!

√
π

Nn,sNn′,s ′

εn,sεn′,s ′
{[εn′,s ′kn,skn′,s ′ + εn,s]δn,n′−1 + [2nεn′,s ′ + 2(n′ + 1)εn,skn,skn′,s ′ ]δn,n′+1}, (19)

where s = {s1,s2} and s ′ = {s ′
1,s

′
2}. Using the identity fζ (1 − fζ ′)[1 − eβ(Eζ −Eζ ′ )] = fζ − fζ ′ , inserting Eqs. (18) and (19) in

Eq. (16), and setting θ = (2πl2
B/a)ky , we obtain

σyx = 4e2

h

h̄2v2
F

πl2
B

∑
s,s ′

∞∑
n

{
ηn,s,s ′

∫ 2π

0

(fn,s − fn+1,s ′ )dθ

[En,s − En+1,s ′ + (λn,s − λn+1,s ′ ) cos θ ]2

− ξn,s,s ′

∫ 2π

0

(fn,s − fn−1,s ′ )dθ

[En,s − En−1,s ′ + (λn,s − λn−1,s ′ ) cos θ ]2

}
, (20)

where λn,s = V0e
−u/2Gn,s and

ηn,s,s ′ = (n + 1)

[
dn,sdn+1,s ′

εn,sεn+1,s ′
(knkn+1,s ′εn+1,s ′ + εn,s)

]2

,

(21)

ξn,s,s ′ = n

[
dn,sdn−1,s ′

εn,sεn−1,s ′
(knkn−1,s ′εn,s + εn−1,s ′ )

]2

.

Due to the n − 1 subscripts, the second term in Eq. (20) is
valid only for n � 2, whereas the first term is valid for n � 1.
However, one can change n − 1 to n in the second term and
combine it with the n � 1 term. Then the sum over n starts
at n = 1 for both terms. If only the n = 0 LL is occupied the
Hall conductivity can be evaluated using the n = 0 eigenstates
given in Appendix B. The result is given by Eq. (B6). When the
nth LL is occupied, n � 1, at T = 0 this n = 0 contribution
vanishes identically since all Fermi factors are equal to 1.

In Fig. 7 we contrast the Hall conductivities versus (weak)
magnetic field B in monolayer and case (i) bilayer graphene.
The result for the former is taken from a straightforward
extension of Eq. (14) of Ref. 16, valid for V0 = 0, to the
case where the modulation is present (V0 �= 0) [see also
Eq. (B7)]. Surprisingly, one can see well-defined plateaus at
(a) half-integer and (b) integer multiples of 4e2/h although the
field B is weak. Notice that for bilayer graphene the plateaus
occur at higher B than in monolayer graphene. This is due to

the shift in the energy levels brought about by the interlayer
coupling t in bilayer graphene [cf. Eq. (3) and Sec. III]. An
important feature is that at T = 6 K the plateaus have almost
disappeared. This is because neither the k-dependent shift
of the LLs nor their width have been taken into account.
If one takes them into account, something that is beyond
the scope of the present work where we focus on weak B

and weak modulation, the temperature range of well-defined
plateaus can be increased by about one order of magnitude
(cf. Ref. 16).

Another noteworthy feature of the Hall conductivities
shown in Fig. 7, is their behavior at very low B fields for
which the plateaus are not resolved. Their apparent monotonic
behavior with B is in fact an oscillatory one as shown in
Figs. 8(a) and 8(b), where we plot the derivative dσyx/dB

for very weak fields. As inferred, in these ranges of B the
Hall conductivity σyx oscillates with B but its small-amplitude
oscillations are not visible on the scale of Fig. 7, whereas
they are in dσyx/dB shown in Fig. 8. Notice that the Hall
conductivity for the bilayer cases (ii) and (iii), with different
applied voltages V1(x) and V2(x), leads to the same results as
case (i). This is due to the subtraction of the bandwidths of
adjacent LLs described by the term λn,s − λn±1,s ′ in Eq. (20)
and to the smallness of the energy correction, due to the
modulation, compared to the Fermi level.
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FIG. 7. (Color online) Hall conductivity σyx , in (a) single-layer
and (b) bilayer graphene [case (i)], as a function of an external
magnetic field B, at temperatures T = 2 and 6 K. The insets show
σyx in a narrow range of B. Notice the plateaus, for T = 2 K, at
half-integer and integer multiples of 4e2/h in (a) and (b), respectively,
and their near disappearance at T = 6 K.

C. Collisional conductivity

For the unmodulated 2DEG this is the only component
that gives rise to the Shubnikov–de Haas oscillations since
in this case σ dif

μν vanishes identically. Taking spin and valley

FIG. 8. (Color online) Derivative dσyx/dB vs B for very weak
fields, for which the plateaus are not resolved, and two different
temperatures. (a) is for single-layer and (b) for case (i) bilayer
graphene.

degeneracies into account it is given (μ = ν) by

σ col
μμ = 2βe2

LxLy

∑
ζ,ζ ′

f (Eζ )[1 − f (Eζ ′)]Wζ,ζ ′(aμ,ζ−aμ,ζ ′ )2,

(22)

where Wζ,ζ ′ is the transition rate between the states ζ and
ζ ′ and aμ,ζ = 〈ζ |rμ|ζ 〉 the expectation value of the position
operator. In contrast with Eqs. (13) and (22) is valid for both
elastic and inelastic scattering.

The evaluation of Eq. (22) is carried out along the lines
of Ref. 2. Within first-order perturbation theory the perturbed
eigenfunctions |n,s,ky〉 are given by

|n,s,ky〉 = |n,s,ky〉0 +
∑
n′ �=n

Vn,s,n′,s ′

En,s − En′,s
|n′,s ′,ky〉0, (23)

with |n,s,ky |〉0 being the unperturbed ones given by Eq. (4).
For the evaluation of Eq. (22) using the states (23) we

assume elastic scattering by random impurities of density
NI . We first notice that in Eq. (22) we have, for μ = y,
ay,ζ − ay,ζ ′ = 0. That is, σ col

yy vanishes and we have to
evaluate only the component σ col

xx . Because the details are
rather involved, we present them in Appendix C. With
A0 = (2e2/h)(NIU

2
0 /π2l2

B	) the result for σ col,0
xx , without the

correction to the wave function, is

σ col,0
xx ≈ A0

∞∑
n,s

Sn,sIn,s , (24)

where the level width 	 is taken constant due to the smallness
of B. Sn is given by Eq. (C8) and

In,s =
∫ 2π

0
[−∂f (En,s,θ )/∂En,s,θ ]dθ. (25)

If we include the correction to the unperturbed wave function
the total collisional conductivity takes the form

σ col
xx ≈ A0

∞∑
n,s

Sn,s[In,s + �n,sJn,s], (26)

with �n = 2V 2
0 ue−u[P 2

n,s + Pn,sPn+1,s + P 2
n+1,s], the factor

Pn given by Eq. (C9), and

Jn,s =
∫ 2π

0
sin2 θ [−∂f (En,s,θ )/∂En,s,θ ]dθ. (27)

In Fig. 9 we plot σ col
xx , for case (i) bilayer graphene, as

a function of the external magnetic field B, at temperatures
T = 2 K (blue solid curve) and T = 6 K (red dashed curve).
As can be seen, this component oscillates with B but the
oscillation amplitude is much smaller than that of the diffusive
contribution σ dif

yy shown in Fig. 5(b). Qualitatively this is
also the case in a 2DEG and the oscillations reflect those
of the DOS (cf. Ref. 2). To make this point clearer, the inset
shows the collisional σ col

xx (blue solid curve) and σ dif
yy diffusive

conductivities (dashed curve) on top of each other in a narrow
range of low B. As shown, the two components oscillate out
of phase. Similar results occur in single-layer graphene (see
Ref. 10).
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FIG. 9. (Color online) Collisional conductivity σxx , in bilayer
graphene, as a function of an external magnetic field B, at temper-
atures T = 2 K and T = 6 K. The inset shows the collisional σ col

xx

(blue solid curve) and σ dif
yy diffusive conductivities (dashed curve) on

top of each other in a narrow range of low B. The two components
oscillate out of phase.

V. CONCLUDING REMARKS

We evaluated the conductivity tensor in weakly and pe-
riodically modulated bilayer graphene in the presence of a
perpendicular magnetic field B. As in the case of a 2DEG,
the modulation broadens the Landau levels into bands and
for weak magnetic fields leads to the Weiss oscillations in
their bandwidth and the transport coefficients at very low B

and to the Shubnikov–de Haas oscillations at larger B. We also
considered the case in which the periodic, sinusoidal potentials
applied to the bilayer differ in phase by π and the one in which
such a potential is applied to only one layer. As expected, in
the former case we have a severe reduction in the oscillation
amplitude of the Weiss oscillation and a change in their period,
whereas in the latter we have only a reduction in the oscillation
amplitude.

We also contrasted some of the results, whenever deemed
appropriate, with those of the literature pertinent to single-
layer graphene. As we specified in Sec. III, the corresponding
flat-band condition, oscillation frequency, and oscillation
amplitude differ substantially due to the interlayer coupling. In
general, the oscillation amplitude and frequency are higher in
single-layer graphene. As expected though and demonstrated
in Fig. 2, the two results agree only when this coupling is
extremely weak and the two layers are nearly independent.

Further, we showed that the Hall conductivity exhibits the
well-known steps at half-integer and integer multiples of e2/h̄

in single-layer and bilayer graphene, respectively, though the
magnetic fields involved are very weak. This is due to the
larger energy scales, relative to those in a 2DEG, involved in
graphene. For the same densities though we showed that the
plateaus occur at quite different values of B again due to the
changes in the energy spectra and density of states brought
about by the interlayer coupling. In addition, we showed that
the collisional conductivity oscillates with the magnetic field

B even for very weak values of B close to 0.1 T in single-layer
graphene and to 0.25 T in bilayer graphene (cf. Fig. 9).

Our study was limited to potential (or electric) modulations
and did not include any periodic modulations of the magnetic
field. However, on account of similar studies in a 2DEG3,4

and in single-layer graphene,7,10 the results for magnetic
modulations should be qualitatively similar. The same should
hold especially when both types of modulations are present.3

Given that, our results are pertinent to weak and periodic
corrugations of graphene8 when the potential modulation
dominates the stress-induced magnetic modulation.

Note added. We just became aware that the Weiss os-
cillations and van Hove singularities have been experimen-
tally observed in graphene-based systems subjected to two-
dimensional periodic modulations.17
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APPENDIX A: EIGENVALUES AND EIGENSTATES
FOR ZERO BIAS

Below we obtain the eigenfunctions and eigenvalues of the
Hamiltonian (1) following Ref. 13 and neglecting the Zeeman
term due to its smallness. Using Eqs. (1) and (2) H� = E�

leads to

(d/dx − x)ϕb = εϕa − tϕc, (A1)

−(d/dx + x)ϕa = εϕb, (A2)

(d/dx + x)ϕd = εϕc − tϕa, (A3)

−(d/dx − x)ϕc = εϕd, (A4)

where we used the dimensionless units x → lBky + x/lB ,
ε = (lB/h̄vF )E, t → (lB/h̄vF )t . Equations (A1)–(A4) can be
reduced to the coupled differential equations

[d2/dx2 − x2 + 1 + ε2]ϕa = tεϕc,
(A5)

[d2/dx2 − x2 − 1 + ε2]ϕc = tεϕa.

Decoupling Eqs. (A5) results in

(d2/dx2 − x2 + ε2)2ϕa = [1 + t2ε2]ϕa. (A6)

We note that the solution of the following equation can also
satisfy Eq. (A6),

(d2/dx2 − x2)ϕa = γ±ϕa, (A7)

where γ± = −ε2 ± [1 + t2ε2]1/2. To solve Eq. (A7) we set
ϕa(x) = f (x)e−x2/2; this eliminates the x2 term and gives

d2f

dx2
− 2x

df

dx
− (γ± + 1)f = 0. (A8)
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This is the equation satisfied by the Hermite polynomials Hn(x) for 1 + γ± = −2n. The resulting eigenvalues are

ε = s1{t2/2 + 2n + 1 + s2

√
t4/4 + (2n + 1)t2 + 1}1/2, n = 0,1,2, . . . , (A9)

where s1 = ±1 and s2 = ±1 give the different energy bands. The corresponding spinor ϕa is

ϕa = Ne−x2/2Hn(x), (A10)

where N is a normalization factor. Substituting ϕa in Eq. (A2) and using the relation dHn(x)/dx = 2nHn−1(x) gives

ϕb = −(2n/ε)Ne−x2/2Hn−1(x). (A11)

The resulting ϕc and ϕd are

ϕc = knNe−x2/2Hn(x), ϕd = (kn/ε)Ne−x2/2Hn+1(x), (A12)

with kn = (ε2 − 2n)/tε. The normalization of the spinors, upon using∫ ∞

−∞
[ϕ∗

aϕa + ϕ∗
bϕb + ϕ∗

c ϕc + ϕ∗
dϕd ]dx = 1, (A13)

gives

N ≡ Nn = dn/(2nn!
√

πlB)1/2, (A14)

with dn = [k2
n[1 + 2(n + 1)/ε2] + 1 + 2n/ε2]−1/2.

APPENDIX B: ZERO-ENERGY SOLUTION

Equations (A10)–(A12) and (A14) are valid for n � 1. For n = 0 and ε = 0 Eqs. (A1)–(A4) take a simpler form. A solution for
the normalized eigenfunctions is

ψ(x)0+− = 1

[LylB
√

π (1 + t2/2)]1/2

⎛
⎜⎜⎜⎝

e−x2/2H0(x)

0

0

−te−x2/2H1(x)/2

⎞
⎟⎟⎟⎠ eikyy, (B1)

ψ(x)0−− = 1√
LylB

√
π

⎛
⎜⎜⎜⎝

0

0

0

e−x2/2H0(x)

⎞
⎟⎟⎟⎠ eikyy . (B2)

This solution agrees with that of Ref. 18. Notice that ψ(x) = [ϕa,iϕb,ϕc,iϕd ]T . Using Eqs. (B1) and (B2) we obtain the velocity
matrix elements

〈0+|vx |n′〉 = −ivF

dn′,s ′ (2n′
n′!)1/2

(1 + t2/2)1/2

[
1

εn′,s ′
− tkn′,s ′

2

]
δ1,n′ , (B3)

and 〈n′|vy |0+〉 = i〈0+|vx |n′〉. For |0−〉 we have

〈0−|vx |n′〉 = −ivF dn′,s ′ (2n′
n′!)1/2kn′,s ′δ0,n′ , (B4)

with 〈n′|vy |0−〉 = i〈0−|vx |n′〉. In addition, we have ε0,s ′
1,− = 0, ε0,s ′

1,+ = s ′
1

√
t2 + 2, and

lim
n′→0

d2
n′,s ′

1,−k2
n′,s ′

1,− = 0, lim
n′→0

d2
n′,s ′

1,+k2
n′,s ′

1,+ = 1/2. (B5)

Then the Hall conductivity is given by

σyx = 4h̄e2v2
F

LxLy

∑
ky

[
4d2

1,+,−
2 + t2

(
1

ε1,+,−
− tk1,+,−

2

)2
f0,+,− − f1,+,−(

ε0,+,−,ky
− ε1,+,−,ky

)2 + 1

2

f0,−,− − f0,−,+(
ε0,−,−,ky

− ε0,−,+,ky

)2

]
. (B6)

For t → 0 we have dn′,s ′
1,s

′
2
= 1/

√
2, ε0,±,− = 0, ε1,+,− = ε0,+,+ = √

2, and ε0,−,+ = ε1,−,− = √
2. Then Eq. (B6) leads to

σyx = h̄e2v2
F

LxLy

∑
ky

[f0,+,− − f1,+,− + f0,−,− − f1,−,−]. (B7)

In the absence of modulation (
∑

ky
→ LxLy/�

2
B) Eq. (B7) gives the single-layer result, Eq. (14) of Ref. 16 for n = 0.
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APPENDIX C: COLLISIONAL CONDUCTIVITY

Below we briefly present the evaluation of the collisional conductivity using Eqs. (23) and (24). For the evaluation of the transition
rate Wζζ ′ , appearing in Eq. (22), we need the integral

Vn,s,n′,s ′ = 0〈n,s,ky |V0 cos(Kx)|n′,s ′,ky〉0 = V0(−1)mFn,s,n′,s ′

{√
2 sin(Kx0), n′ − n = 2m + 1,

cos(Kx0), n′ − n = 2m,
(C1)

where

Fn,n′ = dn,sdn′,s ′

√
2nn!

2n′
n′!

un′−ne−u/2

[
(1 + kn,skn′,s ′ )Ln′−n

n (u) + 2n′

εn,sεn′,s ′
Ln′−n

n−1 (u) + 2(n + 1)kn,skn′,s ′

εn,sεn′,s ′
Ln′−n

n+1 (u)

]
. (C2)

As for the integral 0〈n,ky |eiq.r |n′,k′
y〉0, involving products of Hermite polynomials Hn(x)Hm(x), it can be evaluated using the

tabulated formula
∫ ∞
−∞ e−(x−y)2

Hn(x)Hm(x)dx = 2n
√

πm!yn−mLn−m
m (−2y2), m � n. For n′ � n we have

〈n,s,ky |eiq.r |n′,s ′,k′
y〉0 = δk′

y ,qy−ky
e−i�−γ /2υn−n′

√
2nn′!
2n′

n!
dn,sdn′,s ′

×
[

(1 + kn,skn′,s ′ )Ln−n′
n′ (γ ) + 2n

εn,sεn′,s ′
Ln−n′

n′−1(γ ) + 2(n′ + 1)knkn′

εn,sεn′,s ′
Ln−n′

n′+1(γ )

]
, (C3)

and for n � n′

0〈n,s,ky |eiq.r |n′,s ′,k′
y〉0 = δk′

y ,qy−ky
e−i�−γ /2υn′−n

√
2n′

n!

2nn′!
dn,sdn′,s ′

×
[

(1 + kn,skn′,s ′ )Ln′−n
n (γ ) + 2n′

εn,sεn′,s ′
Ln′−n

n−1 (γ ) + 2(n + 1)kn,skn′,s ′

εn,sεn′,s ′
Ln′−n

n+1 (γ )

]
, (C4)

where γ = (q2
x + q2

y )l2
B/2, � = x0 + qxqyl

2
B/2, and υ = (qy + iqx)lB/2.

The screened impurity potential is given by U (r − R) = e2e−ks |r−R|/ε|r − R| and its Fourier transform is
Uq = (2πe2/ε

√
q2 + k2

s ). Then the transition rate for randomly distributed impurities of density NI takes the form

Wζζ ′ =
∑

q

|Uq |2|〈n,ky |eiq.r |n′,k′
y〉0|2δ(εn,ky

− εn′,k′
y

) = 2πNI

LxLyh̄

∑
q

|Uq |2||Jnn′ss ′ |2δ(εn,s,ky
− εn′,s ′,k′

y

)
δqy,k′

y−ky
, (C5)

with

|Jnn′ss ′ |2 = n′!
n!

dn,sdn′,s ′e−γ γ n−n′
[

(1 + kn,skn′,s ′ )Ln−n′
n′ (γ ) + 2n

εn,sεn′,s ′
Ln−n′

n′−1(γ ) + 2(n′ + 1)kn,skn′,s ′

εn,sεn′,s ′
Ln−n′

n′+1(γ )

]2

, n � n′. (C6)

Correspondingly the collisional conductivity becomes

σ col,0
xx = 4βe2

(LxLy)2

2πNI

h̄

∑
ζ,ζ ′,q

|Uq |2|Jnn′ss ′ (γ )|2fn,s,ky

(
1 − fn,s,ky

)
δ
(
εn,s,ky

− εn′,s ′,k′
y

)
δqy,ky−k′

y

[
l4
B(ky − k′

y)2]. (C7)

The largest contribution to the integral over q occurs for q � ks . Accordingly we can make the approximation U 2
q ≈ U 2

0 =
(2πe2/εks)2. In addition, we have (ky − k′

y)2 = q2
y = q2 sin2 φ. Then the sum over q, converted to an integral, can be carried out

in polar coordinates with the help of
∫ ∞

0 γ e−γ [Ln(γ )]2dγ = 2n + 1. The dominant contribution comes from n = n′ and s = s ′

and the sum over q is
∑

q q2 sin φ|Jnn,ss |2 = (2LxLy/π )Sn,s with

Sn,s = (
d2

n,s

/
ε4
n,s

)[(
1 + k2

n,s

)2
ε4
n,s(2n + 1) + 4n2(2n − 1) + 4(n + 1)2k4

n,s(2n + 3)
]
. (C8)

When the full Eq. (23) is used we follow the procedure outlined above and obtain Eq. (26). The result for the factor Pn, appearing
in it through �n, is

Pn = dn−1,sdn,s ′

[En−1,s − En,s ′ ]
√

n

[
(1 + kn−1,skn,s ′ )L1

n−1(u) + 2n

εn−1,sεn,s ′
L1

n−2(u) + 2nkn−1,skn,s ′

εn−1,sεn,s ′
L1

n(u)

]
. (C9)
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