|
Record |
Links |
|
Author |
Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M. |
|
|
Title |
Fano resonances in bilayer phosphorene nanoring |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Nanotechnology |
Abbreviated Journal |
Nanotechnology |
|
|
Volume |
29 |
Issue |
21 |
Pages |
215202 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Bristol |
Editor |
|
|
|
Language |
|
Wos |
000428920200001 |
Publication Date |
2018-03-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4484 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.44 |
Times cited |
4 |
Open Access |
|
|
|
Notes |
; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; |
Approved |
Most recent IF: 3.44 |
|
|
Call Number |
UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 |
Serial |
4968 |
|
Permanent link to this record |