toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Hydrophobic interactions modulate self-assembly of nanoparticles Type A1 Journal article
  Year 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 12 Pages 11059-11065  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanoparticles into 3D clusters with well-controlled sizes. A theoretical description of the process confirmed that hydrophobic interactions are the main driving force behind nanoparticle aggregation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312563600070 Publication Date 2012-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 311 Open Access  
  Notes 267867 Plasma Quo; 246791 Countatoms; 262348 Esmi Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:105292 Serial 1538  
Permanent link to this record
 

 
Author Zheng, G.; de Marchi, S.; Lopez-Puente, V.; Sentosun, K.; Polavarapu, L.; Perez-Juste, I.; Hill, E.H.; Bals, S.; Liz-Marzan, L.M.; Pastoriza-Santos, I.; Perez-Juste, J. pdf  url
doi  openurl
  Title Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility Type A1 Journal article
  Year 2016 Publication Small Abbreviated Journal Small  
  Volume 12 Issue 12 Pages 3935-3943  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.  
  Address Departamento de Quiimica Fisica, Universidade de Vigo, 36310, Vigo, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000383375500006 Publication Date 2016-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 140 Open Access OpenAccess  
  Notes This work was supported by the Spanish Ministerio de Economía y Competitividad (MAT2013-45168-R) and the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED-FEDER “Unha maneira de facer Europa”). L.M.L.-M. acknowledges funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement No. 312184, SACS). S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). The authors thank Prof. Paolo Fornasiero for the nitrogen adsorption measurements. E.H.H. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship. S.D.M. acknowledges the support from CsF/CNPq-Brazil fellowship.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643  
  Call Number c:irua:133953 Serial 4083  
Permanent link to this record
 

 
Author Serrano-Montes, A.B.; Langer, J.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Sentosun, K.; Bals, S.; Bekdemir, A.; Stellacci, F.; Liz-Marzán, L.M. url  doi
openurl 
  Title Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 20860-20868  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hybrid colloidal nanocomposites comprising polystyrene beads and plasmonic gold nanostars are reported as multifunctional optical nanoprobes. Such self-assembled structures are excellent Raman enhancers for bio-applications as they feature plasmon modes in the near infrared “first biological transparency window”. In this proof of concept study, we used 4- mercaptobenzoic acid as a Raman-active molecule to optimize the density of gold nanostars on polystyrene beads, improving SERS performance and thereby allowing in vitro cell culture imaging. Interestingly, intermediate gold nanostar loadings were found to yield higher SERS response, which was confirmed by electromagnetic modeling. These engineered hybrid nanostructures notably improve the possibilities of using gold nanostars as SERS tags. Additionally, when fluorescently labeled polystyrene bead are used as colloidal carriers, the composite particles can be applied as promising tools for multimodal bioimaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384034600045 Publication Date 2016-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 64 Open Access OpenAccess  
  Notes Funding is acknowledged from the European Commission (Grant #310445-2 SAVVY), the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom) and the Spanish MINECO (Project MAT2013-46101-R). We thank IKERLAT Polymers for the non-fluorescent PS beads and Prof. Juan Mareque, Prof. Soledad Penades and Dr. Sergio Moya (CIC biomagune) for borrowing various cell lines. D.M.S., J.M.T, and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects MAT2014-58201-C2-1-R, MAT2014- 58201-C2-2-R), from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura) under Project IB13185. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number c:irua:133952 Serial 4082  
Permanent link to this record
 

 
Author Lin, F.; Meng, X.; Kukueva, E.; Kus, M.; Mertens, M.; Bals, S.; Van Doorslaer, S.; Cool, P. pdf  url
doi  openurl
  Title Novel method to synthesize highly ordered ethane-bridged PMOs under mild acidic conditions : taking advantages of phosphoric acid Type A1 Journal article
  Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 207 Issue 207 Pages 61-70  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract (down) Highly ordered SBA-15-type ethane-bridged PMOs have been obtained by employing H3PO4 as acid to tune the pH in the presence of copolymer surfactant P123. The effects of the acidity and the addition of inorganic salt on the formation of the mesostructure are investigated. It is found that, compared with HCl, the polyprotic weak acid H3PO4 is preferable for the synthesis of highly ordered SBA-15-type ethane-bridged PMOs with larger pore size and surface areas under mild acidic conditions. Moreover, taking the advantages of the mild acidic condition, vanadium-containing SBA-15-type ethane-bridged PMOs were successfully prepared through a direct synthesis approach. The XRD, N2-sorption, UVVis and CW-EPR studies of the V-PMO show that part of the vanadium species are present in polymeric (VOV)n clusters, while part of the vanadium centers are well-dispersed and immobilized on the inner surface of the mesopores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000350518600009 Publication Date 2015-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access OpenAccess  
  Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F.Lin. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structure-activity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.615; 2015 IF: 3.453  
  Call Number c:irua:123910 Serial 2379  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author Jain, N.; Hao, Y.; Parekh, U.; Kaltenegger, M.; Pedrazo-Tardajos, A.; Lazzaroni, R.; Resel, R.; Geerts, Y.H.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title Exploring the effects of graphene and temperature in reducing electron beam damage: A TEM and electron diffraction-based quantitative study on Lead Phthalocyanine (PbPc) crystals Type A1 Journal article
  Year 2023 Publication Micron Abbreviated Journal  
  Volume 169 Issue Pages 103444  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000965998800001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited 1 Open Access OpenAccess  
  Notes This work is supported by FWO and FNRS within the 2Dto3D network of the EOS (Excellence of Science) program (grant number 30489208) and ERC-CoGREALNANO-815128 (to Prof. Dr. Sara Bals). N.J. would like to thank Dr. Kunal S. Mali and Dr. Da Wang for useful and interesting discussions on sample preparation procedures. Approved Most recent IF: 2.4; 2023 IF: 1.98  
  Call Number EMAT @ emat @c:irua:196069 Serial 7379  
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Rijnders, G.; Blank, D.H.A.; Leca, V.; Salluzzo, M. doi  openurl
  Title Optimisation of superconducting thin films by TEM Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 372/376 Issue part 2 Pages 711-714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) High-resolution electron microscopy is used to study the initial growth of different REBa2CU3O7-5 thin films. In DyBa2CU3O7-5 ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO-bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk. This variable growth sequence is the origin of the presence of antiphase boundaries. In Nd1+xBa2-xCu3O7-5 thin films, antiphase boundaries tend to annihilate by the insertion of extra Nd-layers. This annihilation is correlated with the flat morphology of the film and the absence of growth spirals at the surface of the Nd-rich films. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000178018800033 Publication Date 2002-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912  
  Call Number UA @ lucian @ c:irua:54796 Serial 2485  
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Salluzzo, M.; Maggio-Aprile, I. pdf  doi
openurl 
  Title Why are sputter deposited Nd1+xBa2-xCu3O7-\delta thin films flatter than NdBa2Cu3O7-\delta films? Type A1 Journal article
  Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 79 Issue 22 Pages 3660-3662  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) High-resolution electron microscopy and scanning tunneling microscopy have been used to compare the microstructure of NdBa2Cu3O7-delta and Nd1+xBa2-xCu3O7-delta thin films. Both films contain comparable amounts of Nd2CuO4 inclusions. Antiphase boundaries are induced by unit cell high steps at the substrate or by a different interface stacking. In Nd1+xBa2-xCu3O7-delta the antiphase boundaries tend to annihilate by the insertion of extra Nd layers. Stacking faults, which can be characterized as local Nd2Ba2Cu4O9 inclusions, also absorb the excess Nd. A correlation is made between the excess Nd and the absence of growth spirals at the surface of the Nd-rich films. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000172204400034 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.411; 2001 IF: 3.849  
  Call Number UA @ lucian @ c:irua:54801 Serial 3916  
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 7 Pages 6777-6786  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678382900042 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180556 Serial 6841  
Permanent link to this record
 

 
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.; pdf  doi
openurl 
  Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
  Year 2014 Publication Small Abbreviated Journal Small  
  Volume 10 Issue 6 Pages 1106-1115  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333538000012 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 79 Open Access Not_Open_Access  
  Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368  
  Call Number UA @ lucian @ c:irua:115566 Serial 1234  
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
  Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 25 Issue 25 Pages 7130-7144  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000366503700003 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 64 Open Access OpenAccess  
  Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805  
  Call Number UA @ lucian @ c:irua:130214 Serial 4147  
Permanent link to this record
 

 
Author Chee, S.-S.; Greboval, C.; Vale Magalhaes, D.; Ramade, J.; Chu, A.; Qu, J.; Rastogi, P.; Khalili, A.; Dang, T.H.; Dabard, C.; Prado, Y.; Patriarche, G.; Chaste, J.; Rosticher, M.; Bals, S.; Delerue, C.; Lhuillier, E. pdf  url
doi  openurl
  Title Correlating structure and detection properties in HgTe nanocrystal films Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 10 Pages 4145-4151  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657242300002 Publication Date 2021-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 20 Open Access OpenAccess  
  Notes The project is supported by ERC starting grant blackQD (Grant No. 756225) and consolidator grant Realnano (815128). This project has received funding from the European Commission (Grant 731019, EUSMI). We acknowledge the use of cleanroom facilities from the “Centrale de Proximité Paris-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (Grant dopQD). This work was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE and also by grants IPERNano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24- 0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19- CE09-0026), and NITQuantum (ANR-20-ASTR-0008-01). A.C. thanks Agence innovation defense for Ph.D. funding; sygmaSB Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:179127 Serial 6837  
Permanent link to this record
 

 
Author Van Velthoven, N.; Henrion, M.; Dallenes, J.; Krajnc, A.; Bugaev, A.L.; Liu, P.; Bals, S.; Soldatov, A.; Mali, G.; De Vos, D.E. pdf  url
doi  openurl
  Title S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 9 Pages 5077-5085  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Heterogeneous single-site catalysts can combine the R precise active site design of organometallic complexes with the efficient recovery of solid catalysts. Based on recent progress on homogeneous thioether ligands for Pd-catalyzed C-H activation reactions, we here develop a scalable metal-organic framework-based heterogeneous single-site catalyst containing S,O-moieties that increase the catalytic activity of Pd(II) for the oxidative alkenylation of arenes. The structure of the Pd@MOF-808-L1 catalyst was characterized in detail via solid-state nuclear magnetic resonance spectroscopy, N-2 physisorption, and high-angle annular dark field scanning transmission electron microscopy, and the structure of the isolated palladium active sites could be identified by X-ray absorption spectroscopy. A turnover frequency (TOF) of 8.4 h(-1) was reached after 1 h of reaction time, which was 3 times higher than the TOF of standard Pd(OAc)(2), ranking Pd@MOF-808-L1 among the most active heterogeneous catalysts ever reported for the nondirected oxidative alkenylation of arenes. Finally, we showed that the single-site catalyst promotes the oxidative alkenylation of a broad range of electron-rich arenes, and the applicability of this heterogeneous system was demonstrated by the gram-scale synthesis of industrially relevant products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530090800026 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 37 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no [720996]. N.V.V. and D.E.D.V. thank the FWO for funding (1S32917N and G0F2320N). D.E.D.V. is grateful for KU Leuven's support in the frame of the CASAS Metusalem project and a C3 type project. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079). A.L.B and A.V.S. acknowledge Russian Science Foundation grant no. 20-43-01015 for financial support. We thank Alexander Trigub and Alexey Veligzhanin for their support during the beamtime at Kurchatov Institute. We are indebted to Elizaveta Kamyshova and Anna Pnevskaya for their valuable help during EXAFS measurements. P.L. and S.B. thank European Research Council for the ERC Consolidator Grant 815128, REALNANO. Kassem Amro and Guillaume Gracy from Sikemia are gratefully acknowledged for providing ; sygma Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number UA @ admin @ c:irua:169530 Serial 6598  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P. url  doi
openurl 
  Title Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides Type A1 Journal article
  Year 2023 Publication Materials Today Advances Abbreviated Journal  
  Volume 19 Issue Pages 100390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Herein, we describe for the first time the synthesis of the highly porous Hf-tetracarboxylate porphyrin-based metal-organic framework (MOF) (Hf)PCN-224(M) (M = H2, Co2+). (Hf)PCN-224(H2) was easily and efficiently prepared following a simple microwave-assisted procedure with good yields (56–67%; space-time yields: 1100–1270 kg m−3·day−1), high crystallinity and phase purity by using trifluoromethanesulfonic acid and benzoic acid as modulators in less than 30 min. By simply introducing a preliminary step (10 min), 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin linker (TCPP) was quantitatively metalated with Co2+ without additional purification and/or time consuming protection/deprotection steps to further obtain (Hf)PCN-224(Co). (Hf)PCN-224(Co) was then tested as catalyst in CO2 cycloaddition reaction with different epoxides to yield cyclic carbonates, showing the best catalytic performance described to date compared to other PCNs, under mild conditions (1 bar CO2, room temperature, 18–24 h). Twelve epoxides were tested, obtaining from moderate to excellent conversions (35–96%). Moreover, this reaction was gram scaled-up (x50) without significant loss of yield to cyclic carbonates. (Hf)PCN-224(Co) maintained its integrity and crystallinity even after 8 consecutive runs, and poisoning was efficiently reverted by a simple thermal treatment (175 °C, 6 h), fully recovering the initial catalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001025764000001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2590-0498 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10 Times cited 1 Open Access OpenAccess  
  Notes S.C. acknowledges the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (MSCA-COFUND) grant agreement No 754382 (GOT Energy Talent). S.C. and P.H. acknowledge “Comunidad de Madrid” and European Regional Development Fund-FEDER 2014-2020-OE REACT-UE 1 for their financial support to VIRMOF-CM project associated to R&D projects in response to COVID-19. The authors acknowledge H2020-MSCA-ITN-2019 HeatNMof (ref. 860942), the M-ERA-NET C-MOF-cell (grant PCI2020-111998 funded by MCIN/AEI /10.13039/501100011033 and European Union NextGenerationEU/PRTR) project, and Retos Investigación MOFSEIDON (grant PID2019-104228RB-I00 funded by MCIN/AEI/10.13039/501100011033) project. This work has been also supported by the Regional Government of Madrid (Project ACES2030-CM, S2018/EMT-4319) and the Universidad Rey Juan Carlos IMPULSO Project (grant MATER M − 3000). S.K acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181122 N). Approved Most recent IF: 10; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:197198 Serial 8800  
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. pdf  url
doi  openurl
  Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 18 Pages 6856-6866  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451102100028 Publication Date 2018-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access OpenAccess  
  Notes This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Chirea, M.; Altantzis, T.; Pastoriza-Santos, I.; Perez-Juste, J.; Silva, F.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 4776-4784  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m(2) g(-1)) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000319008700028 Publication Date 2013-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 50 Open Access  
  Notes Esf; 262348 Esmi Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:109060 Serial 705  
Permanent link to this record
 

 
Author Feld, A.; Weimer, A.; Kornowski, A.; Winckelmans, N.; Merkl, J.-P.; Kloust, H.; Zierold, R.; Schmidtke, C.; Schotten, T.; Riedner, M.; Bals, S.; Weller, P.D., Horst url  doi
openurl 
  Title Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation Type A1 Journal article
  Year 2018 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 152-162  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Herein we demonstrate that meticulous and in-depth analysis of the reaction mechanisms of nanoparticle formation is rewarded by full control of size, shape and crystal structure of superparamagnetic iron oxide nanocrystals during synthesis. Starting from two iron sources – iron(II)- and iron(III) carbonate -a strict separation of oleate formation from the generation of reactive pyrolysis products and concomitant nucleation of iron oxide nanoparticles was achieved. This protocol enabled us to analyze each step of nanoparticle formation independently in depth. Progress of the entire reaction was monitored via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and gas chromatography (GC) gaining insight into the formation of various iron oleate species prior to nucleation. Interestingly, due to the intrinsic strongly reductive pyrolysis conditions of the oleate intermediates and redox process in early stages of the synthesis, pristine iron oxide nuclei were composed exclusively from wustite, irrespective of the oxidation state of the iron source. Controlling the reaction conditions provided a very broad range of size- and shape defined monodisperse iron oxide nanoparticles. Curiously, after nucleation star shaped nanocrystals were obtained, which underwent metamorphism towards cubic shaped particles. EELS tomography revealed ex post oxidation of the primary wustite nanocrystal providing a full 3D image of Fe2+ and Fe3+ distribution within. Overall, we developed a highly flexible synthesis, yielding multigram amounts of well-defined iron oxide nanocrystals of different sizes and morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456749900017 Publication Date 2018-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 54 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 192346071 – SFB 986 and the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale’ (by grant EXC 1074) S.B. and N.W. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the Research Foundation Flanders (FWO, Belgium) through Project fundings G038116N. Dr. Volker Sauerland for his support in calibrating the MALDI-TOF spectra. Almut Bark for measuring XRD (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:155716UA @ admin @ c:irua:155716 Serial 5073  
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 621-628  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348618400028 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 119 Open Access OpenAccess  
  Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125291 Serial 1858  
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.; pdf  url
doi  openurl
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3661-3667  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000337337100106 Publication Date 2014-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess  
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:117027 Serial 179  
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T. url  doi
openurl 
  Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
  Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 120 Issue 120 Pages 126-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000394398900012 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited 20 Open Access OpenAccess  
  Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402  
  Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654  
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
  Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract (down) Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links  
  Impact Factor 16.6 Times cited Open Access  
  Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994  
  Call Number EMAT @ emat @ Serial 9129  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author Choo, P.; Arenas-Esteban, D.; Jung, I.; Chang, W.J.; Weiss, E.A.; Bals, S.; Odom, T.W. pdf  url
doi  openurl
  Title Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 3 Pages 4408-4414  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Good’s buffers can act both as nucleating and shape- directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good’s buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good’s buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good’s buffers determine the final AuNS morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000780214300084 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 12 Open Access OpenAccess  
  Notes This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern’s MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI).; sygmaSB Approved Most recent IF: 17.1  
  Call Number EMAT @ emat @c:irua:187930 Serial 7055  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzan, L.M. url  doi
openurl 
  Title Surfactant layers on gold nanorods Type A1 Journal article
  Year 2023 Publication Accounts of chemical research Abbreviated Journal  
  Volume 56 Issue 10 Pages 1204-1212  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Gold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spect r u m based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stabi l i t y of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to t h e formation of NRs with specific morphologies. The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availabi l i t y of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding , but many open questions remain. In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a “Conclusions and Outlook” section, outlining promising future research directions and developments that we consider are sti l l required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986447000001 Publication Date 2023-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 18.3 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) , from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M. and Grants RYC2019-027842-I , PID2020-117885GA-I00 to J.M.) , and by Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007) , National Center for International Research on Green Optoelectronics (No. 2016B01018) , MOE Interna-tional Laboratory for Optical Information Technologies, and the 111 projects. Approved Most recent IF: 18.3; 2023 IF: 20.268  
  Call Number UA @ admin @ c:irua:196768 Serial 8940  
Permanent link to this record
 

 
Author Hamon, C.; Novikov, S.M.; Scarabelli, L.; Solís, D.M.; Altantzis, T.; Bals, S.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals Type A1 Journal article
  Year 2015 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 2 Issue 2 Pages 1482-1488  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels,

confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers)and the enhancement factor has been proposed, no systematic

study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical

simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental

data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363435600013 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.756 Times cited 70 Open Access OpenAccess  
  Notes The authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economía y Competitividad (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economiá y Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.756; 2015 IF: NA  
  Call Number c:irua:129458 Serial 3978  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (down) Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3220-3226  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000337337100038 Publication Date 2014-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116954 Serial 2189  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: