|
Record |
Links |
|
Author |
Hamon, C.; Novikov, S.M.; Scarabelli, L.; Solís, D.M.; Altantzis, T.; Bals, S.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M. |
|
|
Title |
Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
ACS Photonics |
Abbreviated Journal |
Acs Photonics |
|
|
Volume |
2 |
Issue |
2 |
Pages |
1482-1488 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels,
confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers)and the enhancement factor has been proposed, no systematic
study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical
simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental
data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000363435600013 |
Publication Date |
2015-09-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2330-4022 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.756 |
Times cited |
70 |
Open Access |
OpenAccess |
|
|
Notes |
The authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economía y Competitividad (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economiá y Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); |
Approved |
Most recent IF: 6.756; 2015 IF: NA |
|
|
Call Number |
c:irua:129458 |
Serial |
3978 |
|
Permanent link to this record |