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Abstract 

Electron tomography is a widely used experimental technique for analyzing nanometer-scale structures 

of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional electron 

tomography tilt series can easily take up one hour or more, depending on the complexity of the experiment. 

Using electron tomography, it is therefore far from straightforward to obtain statistically meaningful 3D data, 

to investigate samples that do not withstand long acquisition, or to perform in situ 3D characterization using 

this technique. Various acquisition strategies have been proposed to accelerate the tomographic acquisition, 

and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a 

projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional 

and continuous technique. In this paper, the different acquisition strategies will be experimentally compared in 

terms of speed, resolution and electron dose, based on experimental tilt series acquired for various metallic 

nanoparticles. 
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1. Introduction 

Transmission Electron Microscopy (TEM) is a technique, capable of investigating nano-sized objects 

down to the atomic scale.[1–4] However, TEM only provides 2D projection images of 3D objects, hereby missing 

a wealth of information. The interpretation of a 3D structure based on 2D projections alone can indeed be 

incomplete or unreliable.[5–7] It is therefore clear that a 3D characterization is essential to unravel the structure-

property relationship of a given nanomaterial. By combining the powerful imaging capacity of a TEM with the 

mathematical principles of computed tomography, such investigations are nowadays possible. In 2003, 

Midgley et al. combined High Angle Annular Dark Field Scanning TEM (HAADF-STEM) with 

tomography,[5,8] an approach that has been successfully applied to investigate a broad variety of 
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nanostructures.[6,7,9–11] Electron Tomography (ET) experiments are based on acquiring tilt series of projection 

images over an angular range that is as large as possible to maximize resolution in 3D. To facilitate the ET 

acquisition, commercial software has been developed, which automates the tilt series acquisition and drives 

the mechanical rotation of the specimen during the tomography experiment.[12–19] For optimum results, the 

software implements automatic tracking of the particle of interest between successive tilts by e.g. cross-

correlation. Optimization of the defocus can be done by evaluating an image sharpness measure, obtained from 

projections acquired at different defocus.[20] Nevertheless, even when selecting a low image collection time, 

the need to perform all of these steps consecutively attributes to a lengthy acquisition. The total time required 

for the acquisition of a conventional TEM tomography tilt series equals at least 10 minutes. In scanning mode 

(STEM), only a small fraction of all scattered electrons is captured, due to a restricted detector collection angle, 

thereby lowering the detection efficiency and prolonging the experimental time to approximately an hour, 

depending on the complexity of the experiment. Moreover, the pre-acquisition steps (i.e. tracking and focusing) 

cause additional exposure of the specimen to the electron beam and potentially induce irradiation damage.  It 

is clear that one of the emerging challenges in the field of ET is to improve the speed of tomography 

experiments, while preserving the quality of the final 3D reconstruction. Specifically, overcoming this 

challenge is indispensable for enabling: 

 ET experiments on beam sensitive materials such as polymers or metal organic frameworks. 

 high throughput ET investigations which provide statistically relevant information on for instance 

particle size or composition. 

 in situ ET experiments to capture the nanomaterials their 3D dynamic behavior when exposed to 

operando conditions.  

 

First attempts to accelerate the acquisition process of ET tilt series were made in Bright Field (BF) 

TEM mode[21–24]. By tilting the holder uninterruptedly while continuously acquiring projection images, the total 

acquisition time could be reduced to the order of minutes or even less. The total electron dose was lower by at 

least one order of magnitude when compared to a conventional tilt series. However, BF-TEM tomography is 

only applicable when investigating non-crystalline, or weakly scattering objects. Otherwise, diffraction effects 

induce nontrivial BF-TEM contrast for certain orientations of the object with respect to the incoming electron 

beam, thereby violating the projection requirement for tomographic reconstruction.[5] For such samples, 

HAADF-STEM is often combined with tomography. In HAADF-STEM diffraction contrast is minimized and 

mass-thickness contrast predominantly contributes to the image formation.  Recently, “continuous” 

tomography was also introduced for HAADF-STEM imaging.[25] By uninterruptedly tilting the holder and 

continuously acquiring HAADF-STEM projection images, it became possible to investigate the thermal 

reshaping and alloying behaviour of metallic nanoparticles under in situ conditions.[25–27] However, until now, 

a thorough experimental evaluation of the accelerated acquisition methodologies with respect to conventional 

tomography has been lacking. In this paper, we will therefore compare fast HAADF-STEM tomography to 

conventional HAADF-STEM tomography in a qualitative and quantitative manner, followed by a discussion 

of the strengths and limitations of both techniques. This paper is structured as follows. First, we introduce the 



different acquisition methodologies and discuss their advantages and drawbacks. Afterwards, we elaborate on 

the post-processing involved for fast HAADF-STEM tilt series. In the last section, we present a comparative 

study of various acquisition methodologies. For each acquisition technique, we will evaluate the speed, the 

reconstruction quality and the required electron dose.   

 

2. Acquisition methodologies 

2.1 Conventional Tomography 

A conventional ET experiment is composed out of several consecutive steps. To retrieve the 3D 

structure of a nano-object, a tilt series of images is typically recorded over an angular range of ± (75˚ – 80˚), 

with a tilt increment of 1–3˚. In this work, a tilt increment of 3˚ was used, since it provides a good compromise 

between the experimental runtime and the accuracy of the obtained reconstruction when using standard 

reconstruction algorithms such as the Expectation Maximization (EM)  algorithm.[28] At each tilt angle, the 

sample has to be positioned in the field of view and the image has to be refocused prior to the next acquisition 

(Figure 1a). These consecutive steps contribute to a lengthy acquisition, which may take up to 1 hour or more.  

 

Figure 1: Graphic illustration of conventional, continuous and incremental tomography. The orange frames 

in (c) represent stable goniometer positions during the incremental tilting scheme. 

 

2.2 Continuous Tomography 

Continuous tomography was proposed to overcome the limitations discussed above, meaning that the 

holder is rotating uninterruptedly instead of using the classical step-by-step procedure, and intermediate 

refocusing and repositioning is performed manually at the same time.[25] In this manner, a projection “movie” 

is recorded rather than a set of projection images (Figure 1b). By avoiding the individual repositioning and 

refocus steps it becomes possible to reduce the total acquisition time for a tilt series by at least a factor of 10. 

The effective reduction in experimental runtime depends on the mechanical stability of the microscope stage, 



the sensitivity of the detector and the detector read-out time. The related electron dose reduction will be further 

discussed in Section 5 (Table 3).  

 

As can be expected, the time gain comes at a cost of the image quality. For example, because of the 

continuous tilt, the nano-object rotates around the tilt axis while acquiring a single HAADF-STEM “frame”. 

Therefore, it is essential to keep the tilt angle per frame small enough to treat the frames as static projection 

images. In this work, we selected a frame time of 1 s and a tilt speed such that the sample was tilted from -75˚ 

to 75˚ in a total time of 5 minutes. This corresponds to a tilt increment of 0.6° per image, which is sufficiently 

small to treat the continuous projection movie as being built up out of static projection images, whereas larger 

tilt angles per frame may lead to blurring effects that deteriorate the reconstruction. An additional factor that 

restricts the tilting speed is the capability of the microscope operator to keep the nano-object in the field of 

view during the tilt, which in turn depends on the mechanical stability of the microscope stage and 

magnification used. Selection of the frame time is also defined by this factor, since for longer frame times at a 

similar tilting speed, significant drift of the nano-object might occur over the course of the acquisition of a 

single HAADF-STEM frame. As a result, motion artefacts appear which deteriorate the quality of the 

continuous acquisition. On the other hand, much shorter frame times lower the signal-to-noise ratio of the 

recorded images, which impedes the manual tracking and refocusing of the particle. Therefore, a compromise 

has to be made between the tilting speed and frame time. An example of a raw continuous tilt series of an 

Au@Ag nanorod is provided in the Supplementary Movie 1.  

 

2.3 Incremental Tomography 

A major bottleneck for continuous tomography is that the goniometer stage and tomography holders 

of common electron microscopes are not originally designed for fast, continuous, tilting. As a result, high 

frequency vibrations arise when tilting at high speed. Such high frequency vibrations give rise to jitter-like 

artefacts in the HAADF-STEM projection images, as illustrated in Figure 2a. Whereas the influence of the 

vibrations can be minimized through post-processing methods, as will be discussed later on, it is fundamentally 

preferential to avoid such noise during the experiment. Therefore, a hybrid acquisition strategy was proposed 

that combines the advantages of the conventional and continuous acquisition method, referred to as the “fast 

incremental tomography” (Figure 1c). During the incremental approach, tilting is performed in a step-wise 

manner, similar to the conventional method. At each angle, a certain relaxation time is imposed which can be 

used to reposition and refocus the sample manually. The projection images however are acquired continuously, 

again resulting in a projection movie. Given the incremental tilting and the imposed relaxation time, projection 

frames are also obtained while the goniometer is in a stable state (Figure 1c, orange framed projections), 

thereby efficiently removing the source of the high frequency vibrations. As a result, the incremental approach 

provides a compromise between the speed of a continuous acquisition, and the image quality of a conventional 

acquisition.  

 



The dominant time gain for incremental tomography results from the acceleration of the pre-acquisition 

steps. Indeed, while commercially available software typically requires multiple images to evaluate whether 

the particle of interest is in the field of view and in focus, an experienced TEM operator can perform such 

actions much more rapidly. Here, we selected a frame time of 1 s and a tilt increment of 2˚ for the incremental 

acquisition. At every angular position, a relaxation period of 4 s was imposed, which could be used to reposition 

and refocus on the particle of interest and provided sufficient time for the goniometer to stabilize. This leads 

to a total acquisition time of 6 minutes. The stage tilt for the incremental approach was programmed through 

the scripting interface available in Thermo Fisher Scientific microscopes using the Python programming 

language. An example of a raw incremental tilt series of an Au@Ag nanorod is provided in the Supplementary 

Movie 2. 

 

3. Pre-processing methodologies 

Prior to the experimental evaluation of three different acquisition strategies in terms of resolution and 

electron dose, we discuss all computational pre-processing steps involved in handling the fast tilt series. The 

different steps will be explained using a continuous tilt series of a Au nano decahedron.  

 

3.1 Noise correction 

Figure 2a shows a HAADF-STEM projection frame which was extracted from continuous tilt series 

of a Au nano decahedron. Jitter along the fast scanning axis (white arrow) can be observed due to mechanical 

instabilities that occur during the continuous acquisition.[24] Because of the directionality and broad frequency 

distribution of the jitter, the artefacts appear as a stripe in the Fourier transform of the acquired images (Figure 

2b, white arrow). The first step of data pre-processing therefore consists of applying a directed low pass filter 

in Fourier space (Figure 2c), resulting in an improved image quality (Figure 2d). The width, orientation, inner 

and outer radius of the filter are to be manually tuned, since they depend on the acquisition parameters and the 

structure of the studied object. Indeed, increasing the width of the filter improves the denoising, but introduces 

additional directional blurring as well. Consequently, a compromise has to be made. 



 
 

Figure 2: (a) HAADF-STEM image obtained during the fast continuous acquisition of a single nanoparticle, 

revealing distortions along the fast scanning axis. (b) The amplitude of the Fourier transform of (a). (c) The 

directional low pass filter used to remove these frequencies and restore the projection image (d). 

 

3.2 Angle assignment 

In order to use the frames, extracted from the continuous series, as input for a tomographic 

reconstruction, an angle needs to be assigned to each projection. Given our static projection approximation, we 

assigned a constant angle value to each projection image. The constant angle value was determined as the 

average tilt angle of the pixels in that image, as illustrated in Figure S1.  

  

3.3 Alignment 

The projection images are aligned with respect to each other using a cross-correlation approach. For 

the incremental acquisition strategy, pre-processing starts with the alignment since the object is kept stable 

between consecutive tilts. The angle assignment for the incremental acquisition is therefore more convenient 

as it can be determined while the goniometer stage is in a stable position (i.e. not rotating).  In addition, the 

application of a directed low pass filter is no longer required since the high frequency vibrations are already 

experimentally prevented. However, for both fast acquisition techniques, the mechanical instability of the 

specimen holder may cause considerable drift. As a result, the sample can partially move out of the field of 

view and/or movement artefacts can occur. Hereby, the standard cross-correlation approach, where each image 

is aligned to the previous one, performs sub-optimally. In Figure S2a, the average of a fast continuous tilt 

series is shown after it was aligned based on only the previous projection image. It can be seen that no precise 



alignment is obtained. Therefore, all projection images are aligned to the average of a user selected number of 

previous projection images (typically 5 to 10). As can be seen from Figure S2b, this considerably improves 

the stability of the alignment procedure. Furthermore, it reduces the negative influence of defocused and/or 

deformed projection images, caused by manual tracking and focusing during the fast acquisition, present in the 

tilt series. After performing the image alignment, the tilt axis alignment is carried out using the conventional 

approach.[30]  

 

3.4 Image Selection and Reconstruction 

Distorted projection images do not only hamper the alignment, they can also negatively influence the 

reconstruction accuracy.  After the initial alignment, deteriorated projection images are therefore removed from 

the tilt series in an automated manner (Figure 3a). First, an initial reconstruction is computed making use of 

the ASTRA toolbox implementation of the EM reconstruction algorithm[31–33].  Next, forward projections are 

calculated for all angles present in the fast tilt series. Comparison between the forward projections of an 

intermediate reconstruction and experimentally acquired projection images allows to determine which 

projection images have the least quality. Figures 3b-c depict one of the removed projection images together 

with their forward projected counterpart. Sample drift over the course of the acquisition of a single HAADF-

STEM frame results in motion artefacts, which can be recognized as skewing of the object of interest (b). Such 

artefacts are not present in the forward projection of the intermediate reconstruction (c), since only consistent 

features coming from the real structure of object are promoted by the 3D reconstruction algorithm.  

 
 To assess which projection images predominantly deteriorate the reconstruction accuracy, we evaluate 

the absolute deviation around the median of the normalized root mean square error (RMSE) between the 

experimental and calculated projection images[34]. The absolute deviation of the median provides a measure for 

the relative difference of the RMSE of a single projection image to the median of the RMSE of all projection 

images. This approach is therefore an efficient method to detect outliers (i.e. the most deteriorated projection 

images) within the tilt series. We hereby use the following formula: 

 

𝑅𝑀𝑆𝐸𝑖 =  √∑ (𝑝𝑗𝑒𝑥𝑝,𝑖 − 𝑝𝑗𝑐𝑎𝑙𝑐,𝑖)2 /𝑁𝑁
𝑗 .                                                                 [1] 

 

The experimental continuous projection images and their calculated forward projected counterparts are 

respectively defined as 𝑝𝑒𝑥𝑝and 𝑝𝑐𝑎𝑙𝑐. 𝑁 corresponds to the number of pixels in the projection images. Once 

the error measure is obtained for each projection image, the absolute deviation around the median is calculated 

as follows: 

 𝑅𝑀𝑆𝐸𝑖′  =  |𝑅𝑀𝑆𝐸𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑀𝑆𝐸)|𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑀𝑆𝐸) .                                                        [2] 



 

In Figure 3d, the RMSE graph for an experimental tilt series is plotted (blue line). Images acquired at high tilt 

are generally of lower quality because of detector shadowing by the holder and/or grid and consequently they 

intrinsically differ more from their calculated counterparts. Therefore, a low order polynomial trend was first 

removed from the RMSE graph. By manually thresholding (red line) the graph, the most distorted images can 

be detected and consequently removed from the tilt series. Finally, the reduced projection stack is realigned, 

as discussed above, and this procedure is iteratively repeated until the values for the RMSE′ are below the 

preset threshold. Given the large amount of projection images in a fast tilt series, in comparison to a 

conventional tilt series, removal of the distorted projection images will not lower the quality of the 

reconstruction. Finally, in this work, the 3D reconstruction is calculated by using the reduced tilt series as input 

to for the EM reconstruction algorithm for 20 iterations.[28] 

 
Figure 3: (a) Illustration of the iterative scheme, used to remove deteriorated projection images. (b) 

Experimental image and (c) calculated projection of an intermediate reconstruction of the object. (d) Error 

metric for images in an experimental tilt series and the threshold used to exclude corrupted images. 

 

 

 

 



4. Results  

4.1 Resolution 

To evaluate the difference in reconstruction quality between the conventional, continuous and 

incremental approach, we acquired three HAADF-STEM tilt series of the same nanoparticle, using the three 

different acquisition methodologies, for five different sample morphologies. For this purpose, we selected Au 

and Au@Ag nanoparticles, since they are relatively resistant to the electron beam. Each conventional series 

consisted out of 51 projection images, acquired over an angular range of ± 75° with a tilt increment of 3° using 

either a Thermo Fisher Scientific Titan TEM operated at 300 kV or a Thermo Fisher Scientific Tecnai Osiris 

TEM operated at 200 kV. For every conventional projection image, a frame time of 6 s was used. Additional 

focus and repositioning steps lead to a total acquisition time of approximately 1 hour per conventional series. 

Next, fast continuous and incremental tilt series were collected from the same nanoparticles, using the same 

microscopes, with identical magnification and angular range. For the continuous acquisition, a frame time of 1 

s was selected and the goniometer rotation speed was set such that the sample was tilted from -75˚ to 75˚ in 5 

minutes of time. In this manner, a good compromise between signal-to-noise ratio and experimental runtime 

was obtained. For the incremental acquisition, a frame time of 1 s was selected as well, in combination with a 

tilt increment of 2˚ and a relaxation period of 4 s. This results in a total experimental runtime of 6 minutes. 

Details on the experimental parameters of fast series are listed in Table 1. The conventional series were 

acquired under similar experimental conditions, apart from the longer dwell- and frame time and therefore with 

a higher electron dose. The electron dose and experimental runtime will be further discussed in Section 5 

(Table 3). 

 Sample 

description 

Frame 

size (px) 

Frame 

time (s) 

Pixel size 

(pm) 

Dwell 

time (μs) 

Electron dose per 

image  (e/ Å2) 

Microscope 

Sample 

1 

Au octopod 512 x 

512 

1 1086 3 2.65 x 106 Titan        

(300 kV) 

Sample 

2 

Au octopod 512 x 

512 

1 1193 3 2.20 x 106 Osiris       

(200 kV) 

Sample 

3 

Au@Ag  

nanorod 

512 x 

512 

1 771 3 5.26 x 106 Titan        

(300 kV) 

Sample 

4 

Au@Ag 

nanotriangle 

512 x 

512 

1 597 3 8.77 x 106 Osiris       

(200 kV) 

Sample 

5 

Au nanostar 512 x 

512 

1 388 3 2.08 x 107 Titan        

(300 kV) 
 

Table 1: Experimental details of the tilt series acquired for evaluating the different acquisition methodologies. 

 

Reconstructions were calculated, based on the continuous and incremental tilt series and compared to 

the reconstruction obtained from the conventional tilt series. Both the continuous and incremental series were 

processed as previously discussed in Section 3. In Figure 3, a qualitative comparison is made between all 

acquisition techniques for a Au octopod which was investigated using the Thermo Fisher Scientific Titan TEM 



operated at 300 kV (sample 1). At the top row of the figure, a 3D rendering of the conventional reconstruction 

and  two central orthoslices through the reconstruction are presented. The orientation of the orthoslices is 

indicated in the top right corner. At the second row, similar results are provided for the reconstruction obtained 

from a continuous tilt series, whereas the bottom row displays the results for the incremental approach. In 

Figure S3, a similar comparison is made for the Au octopod which was investigated using the Thermo Fisher 

Scientific Tecnai Osiris TEM operated at 200 kV (sample 2). In both cases, little difference is observed between 

the different reconstructions. The continuous approach causes a slight blurring which can either result from the 

application of the low pass filter, the continuous tilting, or the remaining deformed and/or defocused projection 

images still present in the tilt series. Such blurring does not appear to be present when using the incremental 

acquisition strategy. The Au octopods (sample 1 & 2) are relatively large and the acquisitions were therefore 

performed at moderate magnifications with a pixel size of approximately 1000 pm (Table 1). Since the 

vibrations caused by the mechanical instabilities occur at a scale which is at least one order of magnitude 

smaller, their effect is almost negligible for such moderate magnifications. However, because of the octopods 

their relatively large size, cupping artefacts (i.e. the underestimated intensity in the interior) can be seen in both 

reconstructions.[35]  In Figure 4 and Figure S4, reconstructions of Au@Ag nanoparticles (samples 3 & 4) are 

compared. To accurately investigate the interface between Au and Ag, a smaller pixel size was used (Table 1). 

Blurring induced by the continuous acquisition prevents one from observing a clear separation between both 

phases. However, the incremental reconstruction considerably reduces the amount of blurring. Thereby 

enabling an accurate investigation of the Au-Ag interface and potential intermixture of both elements.[27] For 

the anisotropic nanostar[36] (sample 5, Figure 5), the amount of blurring becomes more substantial and conceals 

small features present in the reconstruction. This is likely related to the increased complexity of morphology 

of the NSs and their small-scale features. We expect that the remaining artefacts present in the projection 

images have a stronger influence on the reconstruction of nanostructures with a complex 3D shape, in 

comparison to reconstructions of more simple geometries. The incremental acquisition however, reduces the 

mechanical instabilities and consequently minimizes the amount of blurring. 

 

 

 



 

Figure 3: (a-c) 3D rendering of the reconstruction of the conventionally acquired tilt series of a Au octopod 

and two central orthoslices through the reconstruction. (d-f) 3D rendering of the reconstruction of the 

continuously acquired tilt series and 2 central orthoslices through it. (g-i) 3D rendering of the reconstruction 

of the incrementally acquired tilt series and 2 central orthoslices through the reconstruction. 

 

 



 

Figure 4: (a-c) 3D rendering of the reconstruction of the conventionally acquired tilt series of a Au@Ag 

nanorod and two central orthoslices through the reconstruction. (d-f) 3D rendering of the reconstruction of 

the continuously acquired tilt series and 2 central orthoslices through it. (g-i) 3D rendering of the 

reconstruction of the incrementally acquired tilt series and 2 central orthoslices through the reconstruction. 

 



 

Figure 5: (a-c) 3D rendering of the reconstruction of the conventionally acquired tilt series of a Au nanostar 

and two central orthoslices through the reconstruction. (d-f) 3D rendering of the reconstruction of the 

continuously acquired tilt series and 2 central orthoslices through it. (g-i) 3D rendering of the reconstruction 

of the incrementally acquired tilt series and 2 central orthoslices through the reconstruction. 

 

 

 

 

 

 

 

 

 

 

 



To investigate the differences in a quantitative manner, the shape- and volume error were calculated 

for the reconstructions obtained from the fast tilt series. The shape error 𝐸𝑠 was calculated as a weighted sum 

over absolute differences for each reconstruction with respect to the reference (i.e. the reconstruction obtained 

from the conventional series) as follows: 

𝐸𝑠 =  ∑|𝑅𝑒𝑐𝑓𝑎𝑠𝑡𝑠𝑒𝑔 − 𝑅𝑒𝑐𝑐𝑜𝑛𝑣𝑠𝑒𝑔 |∑ 𝑅𝑒𝑐𝑐𝑜𝑛𝑣𝑠𝑒𝑔  x 100                                                            [3] 
 𝑅𝑒𝑐𝑐𝑜𝑛𝑣𝑠𝑒𝑔  and 𝑅𝑒𝑐𝑓𝑎𝑠𝑡𝑠𝑒𝑔  refer to the segmented 3D reconstructions of the conventional and fast (i.e. 

continuous or incremental) series respectively. The sum over 𝑅𝑒𝑐𝑐𝑜𝑛𝑣𝑠𝑒𝑔  defines the volume of the reference 

reconstruction. In this manner, the shape error determines the relative difference in shape between the 

reconstructions based on the reference series and the series acquired using the fast acquisition schemes, as a 

percentage of the total amount of misclassified voxels. The threshold for segmentation was determined by 

Otsu’s method[37] for each reconstruction separately. Before calculating the absolute difference, both 

reconstructions were optimally aligned using a MATLAB implementation of intensity-based rigid registration. 

Through gradient descent optimization, this operation minimizes the Mean Square Error (MSE) between the 

two volumes through translation and/or rotation. In addition, the volume error (𝐸𝑉), which corresponds to the 

relative volume difference between the different reconstructions, was determined. The outcome of this 

quantitative assessment is summarized in Table 2. For the Au@Ag nanoparticles, error measures were 

calculated for each separate phase.  Table 2 shows that the incremental approach improves the reconstruction 

accuracy considerably. Especially for the Au@Ag nanoparticles a substantial reduction of both errors is found. 

It can be observed that the shape error for the Au octopod investigated using a Titan TEM (sample 1) is lower 

that the shape error for the near identical octopod investigated using a Tecnai Osiris TEM (sample 2), 

independent of the used acquisition approach. This demonstrates that the used microscope strongly impacts the 

accuracy that can be achieved by the fast acquisition methodologies. The improved stability of the goniometric 

stage of a Titan TEM in comparison to a Tecnai Osiris TEM, is likely responsible for the observed differences. 

Clearly, as the stability of the goniometer stage design improves, the fast approaches will produce even more 

accurate results. We furthermore found that magnification plays a vital role as well. Indeed, for the Au octopod 

(sample 1) investigated using the Titan microscope and a pixel size of 1086 pm, a shape error of 2.95 % was 

found for the continuous acquisition. The nanostar (sample 5) which was investigated using the same 

instrument but using a much smaller pixel size (338 pm), resulted in a significantly higher shape error, equal 

to 16.30 %. This confirms that at such small scales, the vibrations induced by the mechanical instabilities have 

a more detrimental effect on the reconstruction accuracy. 

 

 

 

 

 



 
  𝐸𝑆 continuous 𝐸𝑆 incremental 𝐸𝑉 continuous 𝐸𝑉 incremental 

Sample 1 Au octopod (Titan) 2.95 % 2.26 % 2.05  % 1.69 % 

Sample 2 Au octopod (Osiris) 6.24 % 4.70  % 5.25 % 2.74 % 

Sample 3, Au 
Au@Ag rod 

(Titan) 
8.09 % 3.77 % 5.61 % 0.25 % 

Sample 3, Ag  14.96 % 8.34 % 4.08 % 0.42 % 

Sample 4, Au 
Au@Ag nanotriangle 

(Osiris) 
9.15 % 8.81 % 1.37 % 1.78 % 

Sample 4, Ag  24.00 % 16.24  % 16.85 % 4.68 % 

Sample 5 Au nanostar (Titan) 16.30 % 12.90  % 5.88 % 1.23 % 
 

Table 2: The shape- and volume errors calculated between the reconstructions obtained from the continuous 

and incremental acquisition strategies for the different nanoparticles.  

 
4.2 Electron Dose 

In addition to the benefit in experimental runtime, the fast acquisition approach drastically reduces the total 

accumulated dose. As introduced earlier, a conventional tomography experiment is composed out of a series 

of steps which are performed in a sequential manner: 

 Tilt the object to the next angular position. 

 Track the particle of interest. 

 Optimize the focus. 

 Acquire and save the respective image. 

Commercial software has been developed to automate the acquisition procedure.[12–19] While this facilitates the 

execution of the tomography experiment, it also requires additional electron dose. In Table 3, the calculated 

electron doses are presented, based on typical experimental parameters for the various acquisition strategies. 

Considering an electron beam with a 50 pA beam current, the electron dose was calculated as: 

𝐷𝑜𝑠𝑒 = 𝑏𝑒𝑎𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑥 𝑓𝑟𝑎𝑚𝑒 𝑡𝑖𝑚𝑒𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 𝑥 (𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒)2  𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠                           [3] 
 

 
For the electron dose calculations, we use similar experimental parameters as before and consider that the 

conventional tilt series were acquired over an angular range of ± 75° with a tilt increment of 3° and a frame 

time of 6 s. In addition, the tracking and refocussing needs to be taken into account, since these operations 

require additional illumination of the sample and therefore contribute to the accumulated electron dose. To 

accurately track the particle of interest, an additional projection image needs to be acquired after the tilt. This 

image is typically acquired at a lower magnification, to make sure that the particle of interest does not move 

out of field of view over the course of tilting the stage. To decrease the required electron dose and accelerate 

the experimental runtime, the tracking is conventionally performed with a lower frame time.  For the electron 

dose calculations, we therefore assumed a four times larger pixel size for the tracking, and a short frame time 

of 3 s, as listed in Table 3. The refocus step is done by acquiring a through focus series. Conventionally, 7 



images are acquired at different defocus values. By analysing, for instance, the variance of the images, the best 

defocus can be determined and used for the next acquisition.[20] Also here, a lower frame time and/or frame 

size is used to limit the influence of the electron beam. For the electron dose calculations, we therefore 

considered a frame time and size of respectively 3 s and 256 x 256 pixels. 

 
For both fast acquisition techniques, no additional electrons are required for the tracking and refocussing 

since these corrections are simultaneously performed. When comparing the total calculated electron dose for 

the different acquisition strategies (Table 3), it is clear that the required focus step for the conventional 

methodology leads to a much higher dose. For the selected experimental parameters, both the continuous and 

incremental acquisition require approximately only 50 – 60% of the dose necessary for a conventional 

experiment. This demonstrates that the fast acquisition methodologies are not only useful to increase the 

throughput of ET, but may also allow the 3D investigation of nanomaterials which are sensitive to the electron 

beam.  It must be stressed that the dose for a conventional experiment is an optimistic estimate since the 

automated procedures may fail to properly focus or reposition the particle of interest. This may may occur 

when multiple nanostructures are in field of view or when the material under investigation is composed of low 

scattering elements. If the automated software fails, a longer experimental runtime and therefore a higher 

electron dose is required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 Conventional Continuous Incremental 

 

 

 

 

Acquisition 

Beam current: 50 pA 

Dwell time: 19 μs 

Frame time: 6 s 

Frame size: 512 x 512 

Pixel size: 500 pm 

Tilt range: ± 75° 

Tilt increment: 3° 

# images: 51 

Beam current: 50 pA 

Dwell time: 3 μs 

Frame time: 1 s 

Frame size: 512 x 512 

Pixel size: 500 pm 

Tilt range: ± 75° 

# images: 300 

Beam current: 50 pA 

Dwell time: 3 μs 

Frame time: 1 s 

Frame size: 512 x 512 

Pixel size: 500 pm 

Tilt range: ± 75° 

Tilt increment: 2° 

Relaxation time: 4 s 

# images: 380 

Dose (e/Å2) 3.83 x 109 3.75 x 109 4.75 x 109 

 

 

 

Tracking 

Beam current: 50 pA 

Dwell time: 9 μs 

Frame time: 3 s 

Frame size: 512 x 512 

Pixel size: 2000 pm 

# images per tilt: 1 

  

Dose (e/Å2) 1.2 x 108   

 

 

 

Focus 

Beam current: 50 pA 

Dwell time: 9 μs 

Frame time: 3 s 

Frame size: 256 x 256 

Pixel size: 1000 pm 

# images per tilt: 7 

  

Dose (e/Å2) 3.35 x 109   

 

Total Dose (e/Å2) 

 

7.29 x 109 

 

3.75 x 109 

 

4.75 x 109 

Table 3: Dose calculation for the various acquisition strategies. 

 
 
 
 
 
 
 
 
 
 
 
 



 
5. Discussion 

In this work, we presented two methodologies to perform fast ET in HAADF-STEM mode, which enable 

one to greatly reduce the experimental runtime for ET. We discussed all techniques in terms of acquisition 

time, reconstruction quality and electron dose. Our findings are summarised in Table 4. We show that by using 

dedicated processing methodology, there is a limited difference in reconstruction accuracy for large and 

isotropic nanoparticles. Even more so, such results can be obtained in only a fraction of the time necessary to 

perform a conventional experiment. For relatively small anisotropic nanoparticles with a more complex shape, 

the discrepancy increases but the overall 3D shape remains comparable. It was demonstrated that the proposed 

incremental methodology considerably increases the reconstruction accuracy, in comparison to the continuous 

method, especially for anisotropic nanoparticles. 

 

 In terms of electron dose, the necessary pre-acquisition steps for a conventional acquisition, refocussing 

in particular, attribute to a significantly higher accumulated electron dose. Although the frame time and/or 

frame size can be decreased to minimize their contribution, this would compromise the retrieval of the most 

optimal defocus.  By replacing the fully automated workflow with a semiautomatic one, ET experiments can 

be optimized for speed and electron dose. Both fast acquisition approaches demonstrate that an experienced 

TEM operator can perform the pre-acquisition actions in a much more efficient manner, requiring less electron 

dose, in a guided workflow as proposed in this paper. This is further exemplified by the resulting electron dose 

reduction of approximately 50%. Such results are of high interest for the studies of radiation sensitive materials 

which are currently still extremely challenging since the samples will degrade and deform when exposed to 

relatively high electron doses.  

 

Although incremental tomography leads to a higher the reconstruction accuracy compared to continuous 

tomography, it can be experimentally more challenging. During the incremental acquisition, the sample is tilted 

in a step-wise manner between consecutive angels. In order to minimize the experimental runtime, these tilt 

intervals are performed at such a high speed that it is difficult to manually track the nano-object of interest at 

the same time. As a consequence, the nano-object more easily drifts out of the field of view during the 

acquisition. It is therefore clear that for incremental tomography, the experimental runtime is limited by the 

chosen tilt increment and relaxation time. Large tilt increments and short relaxation periods will speed up the 

acquisition, but complicate the tracking. We expect that development of more stable goniometric stages for 

(S)TEM instruments will bring a significant improvement in the quality of the data provided by the incremental 

technique. Currently, however, continuous tomography holds most promise in terms of experimental runtime. 

This is evidenced by the decrease in experimental runtime from approximately 1 hour to 5 minutes. 

Nevertheless, for in situ tomography experiments where dynamical changes occur within seconds, the total 

acquisition time has to be further lowered by at least a factor of 10. However, when tilting even faster, high 

acquisition rate detectors and electron beam deflectors are required to ensure the static projection 

approximation or dedicated algorithms need to be developed which take the in-frame rotation into 



account.[22,23,38] In addition, the manual tracking and refocussing will become increasingly challenging, and 

should be ideally replaced by optimized automatic routines. 

 

From our results, it is clear that for each ET experiment a careful choice needs to be made concerning 

the used microscope, experimental settings and acquisition strategy. As a general guideline, continuous 

tomography is to be used when acquisition time is priority and uninterrupted feedback is required for tracking 

the nano-object during the acquisition. This is for instance the case when the goniometric stage has a limited 

stability or when a relatively high magnification is required. However, if there is little sample drift during the 

tilt, incremental tomography is preferential, since it improves the reconstruction accuracy, especially for small 

features of interest. Conventional tomography remains, for the time being, the ideal technique when 

reconstruction quality and resolution are most important and a long experimental runtime and a  high electron 

dose can be tolerated. 

 

 Conventional 

(manual) 

Conventional 

(software) 

Continuous Incremental 

Reconstruction 

quality 
++ ++ _ + 

Acquisition Time _ _ _  ++ + 

Electron Dose _ _ _  ++ + 

Table 4: Summarised comparison of the various acquisition strategies. 

 
6. Conclusions  

In conclusion, we compared 3 different acquisition strategies for HAADF-STEM tomography series; 

conventional, continuous and incremental. We discussed the required pre-processing steps, necessary to obtain 

a reliable reconstruction based on the fast continuous and fast incremental series. It was demonstrated that the 

fast approaches show great promise for accelerating the tomographic experiment by approximately a factor of 

10, and lowering the electron dose by a factor of 2. We observed for different nanoparticles that the general 

morphology of the 3D reconstruction is conserved quite well when using a fast acquisition methodology. We 

can therefore still obtain valuable information on the nano-objects investigated using the fast approaches that 

only require a fraction of the time and electron dose necessary to perform a conventional experiment.  The 

benefits of the findings can be applied to enable tomography on beam sensitive materials, collecting more 

statistical relevant 3D data on nanostructures or improve the temporal resolution of 3D imaging for in situ 

studies. 
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9. Supplementary Information  

 

 

Figure S1: For the static approximation, each projection frame was assigned its average tilt angle. 

 

 

Figure S2: Comparison of the average of the aligned tilt series for which the alignment was performed using 

(a) only the previous projection image or (b) the average of the 5 previous projection images. 

 



 

Figure S3: (a-c) 3D rendering of the reconstruction of the conventionally acquired tilt series of a Au octopod 

and two central orthoslices through the reconstruction. (d-f) 3D rendering of the reconstruction of the 

continuously acquired tilt series and 2 central orthoslices through it. (g-i) 3D rendering of the reconstruction 

of the incrementally acquired tilt series and 2 central orthoslices through the reconstruction. 

 

 

 



 

Figure S4: (a-c) 3D rendering of the reconstruction of the conventionally acquired tilt series of a Au@Ag 

nanotriangle and two central orthoslices through the reconstruction. (d-f) 3D rendering of the reconstruction 

of the continuously acquired tilt series and 2 central orthoslices through it. (g-i) 3D rendering of the 

reconstruction of the incrementally acquired tilt series and 2 central orthoslices through the reconstruction. 
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