|
Record |
Links |
|
Author |
Zheng, G.; de Marchi, S.; Lopez-Puente, V.; Sentosun, K.; Polavarapu, L.; Perez-Juste, I.; Hill, E.H.; Bals, S.; Liz-Marzan, L.M.; Pastoriza-Santos, I.; Perez-Juste, J. |
|
|
Title |
Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Small |
Abbreviated Journal |
Small |
|
|
Volume |
12 |
Issue |
12 |
Pages |
3935-3943 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core. |
|
|
Address |
Departamento de Quiimica Fisica, Universidade de Vigo, 36310, Vigo, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Wos |
000383375500006 |
Publication Date |
2016-06-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1613-6810 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.643 |
Times cited |
140 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the Spanish Ministerio de Economía y Competitividad (MAT2013-45168-R) and the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED-FEDER “Unha maneira de facer Europa”). L.M.L.-M. acknowledges funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement No. 312184, SACS). S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). The authors thank Prof. Paolo Fornasiero for the nitrogen adsorption measurements. E.H.H. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship. S.D.M. acknowledges the support from CsF/CNPq-Brazil fellowship.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); |
Approved |
Most recent IF: 8.643 |
|
|
Call Number |
c:irua:133953 |
Serial |
4083 |
|
Permanent link to this record |