|
Record |
Links |
|
Author |
Choo, P.; Arenas-Esteban, D.; Jung, I.; Chang, W.J.; Weiss, E.A.; Bals, S.; Odom, T.W. |
|
|
Title |
Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
ACS nano |
Abbreviated Journal |
Acs Nano |
|
|
Volume |
16 |
Issue |
3 |
Pages |
4408-4414 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Good’s buffers can act both as nucleating and shape- directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good’s buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good’s buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good’s buffers determine the final AuNS morphologies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000780214300084 |
Publication Date |
2022-03-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
17.1 |
Times cited |
12 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern’s MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI).; sygmaSB |
Approved |
Most recent IF: 17.1 |
|
|
Call Number |
EMAT @ emat @c:irua:187930 |
Serial |
7055 |
|
Permanent link to this record |