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Abstract 12 

Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. 13 

Their exact shape determines the properties and thereby the possible applications. Electron 14 

tomography is therefore often used to examine the three-dimensional (3D) shape of 15 

nanoparticles. However, since the acquisition of the experimental tilt series and the 3D 16 

reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 17 

3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is 18 

based on artificial neural networks. The use of a new reconstruction approach enables us to 19 

reduce the number of projection images with a factor of 5 or more. The decrease in acquisition 20 

time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a 21 

large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape. 22 

KEYWORDS: Electron tomography, neural networks, reconstruction algorithm, gold 23 

nanostructures. 24 
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1. Introduction  25 

Gold nanoparticles (NPs) have truly unique electronic, optical as well as catalytic properties, 26 

rendering them ideal for numerous applications in fields as diverse as photovoltaics, 27 

optoelectronics and biomedicine [1–4]. Furthermore, gold NPs can be prepared with almost any 28 

desired shape. Crucial to their application, however, is their exact structure, and specifically their 29 

anisotropy as well as the surface facets they expose. Currently, it is empirically understood how 30 

particle size and shape may be controlled during synthesis [5–8]. Although transmission electron 31 

microscopy (TEM) has become a routine tool to investigate e.g. particle size, (atomic) structure 32 

and shape, increasingly advanced TEM is required for a more in-depth characterisation. For 33 

example, the surface facets of Au nanorods have a major influence on crucial effects such as 34 

reactivity and ligand adsorption and there has been controversy regarding facet indexing [9–11]. 35 

Indeed, TEM images are only two-dimensional (2D) projections of three-dimensional (3D) 36 

objects. To overcome this problem, 3D electron microscopy, or “electron tomography” was 37 

developed [12,13]. In 2003, Paul Midgley and co-workers demonstrated the potential of the 38 

technique in materials science based on high angle annular dark field scanning transmission 39 

electron (HAADF-STEM) microscopy [14,15]. Since then, different electron microscopy modes 40 

have been combined successfully with tomography, leading to a broad variety of 3D structural 41 

and compositional information at the nanoscale [16–21]. Very often, electron tomography is used 42 

to determine the size and shape of the particles and nowadays, 3D reconstructions can even be 43 

obtained with a resolution at the atomic level [22,23]. Although these investigations provide very 44 

precise information on the NP morphology, both the acquisition of tilt series as well as the 3D 45 

reconstruction is very time consuming and it is consequently not straightforward to acquire 46 

results in 3D that are statistically relevant, which is a major drawback e.g. when using electron 47 
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tomography to optimize the synthesis of NPs. This problem will be even more essential for 48 

anisotropic NPs that are currently receiving a lot of attention because of the increased flexibility 49 

they provide to tune the final (optical) properties [24–26]. Since the optimization of the 50 

production of NPs with a specific shape would largely benefit from statistical 3D results with a 51 

nanometer resolution, one of the emerging challenges in the field of electron tomography is to 52 

increase the throughput of 3D reconstructions of NPs. At the same time, the quality of the 53 

reconstructions should be maintained and should enable one to obtain reliable and quantitative 54 

results concerning parameters such as particle size and surface morphology.  55 

In this paper, we will determine the 3D shape and size of a large set of anisotropic Au NPs. We 56 

will make effective use of a new approach for electron tomographic reconstructions that is based 57 

on artificial neural networks. The neural network filtered backprojection method (NN-FBP) is a 58 

recently developed reconstruction technique that has been applied successfully to X-ray 59 

tomography [27]; however the implementation for electron tomography is completely new. The 60 

method that we propose will enable us to reduce the number of necessary projection images for a 61 

3D reconstruction by a factor of 5 or more. In this manner, the acquisition time and time that is 62 

necessary for a 3D reconstruction is significantly reduced, enabling 3D results that are of 63 

statistical relevance. 64 

 65 

2. Neural network filtered backprojection method 66 

The sample that was investigated contains Au NPs yielding different morphologies: nanorods, 67 

nanotriangles, nanoprisms and nanospheres. An HAADF-STEM overview image of the sample 68 

is provided in Figure 1.a. Although this image only corresponds to a 2D projection of a set of 3D 69 

objects, it is already clear that different morphologies occur. In conventional electron 70 
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tomography, a large set of 2D projection images is acquired from the same region of interest 71 

over a large tilt range with a tilt increment of typically 1º or 2º. As all the investigated 72 

nanoparticles have a thickness below 100 nm, the projection requirement for tomography is 73 

satisfied [14,28]. Once this so-called “tilt series” is aligned, the images serve as an input for a 74 

mathematical algorithm that enables one to reconstruct the original 3D structure. Very often, the 75 

3D reconstruction is performed using the “Weighted Backprojection” algorithm (also known as 76 

Filtered Backprojection) or using the “Simultaneously Iterative Reconstruction Technique” 77 

(SIRT). The outcome of this procedure for the different NPs in Figure 1.a is visualized in Figure 78 

1.b. The reconstructions are calculated using the SIRT algorithm and are based on a series of 151 79 

images, acquired over a tilt range of ±75°. Since the quality of 3D reconstructions based on the 80 

conventional approach is predominantly determined by the number of projection images [29–31], 81 

these experiments are very time-consuming and require sufficient measurement time at the TEM. 82 

 83 

Figure 1. (a) The HAADF-STEM overview image shows the presence of several morphologies 84 

in the sample, with indication of (1) a nanotriangle, (2) a nanosphere and (3) a nanorod. (b) 3D 85 

volume renderings of the corresponding nanoparticles are presented. 86 
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The key to increasing the image quality if only a small number of 2D projections are available, 87 

is the effective use of prior knowledge in the reconstruction. By exploiting rather generic 88 

features of the particles, without assuming a specific shape or morphology, this additional 89 

knowledge is used to compute a particle shape that better approximates the true morphology. 90 

Various algorithms involving prior knowledge are currently in use in electron tomography (e.g. 91 

the DART algorithm for discrete tomography [32] and multiple methods for Total Variation 92 

Minimization [33]), where the particular prior knowledge is encoded by the user and various 93 

parameters have to be set. These prior-knowledge based methods are typically very time- 94 

consuming, which limits the throughput of 3D reconstructions that can be achieved by using 95 

them for reconstruction. Furthermore, implementing these methods can be difficult and time-96 

consuming as well, since they rely on advanced mathematics. In this paper, we propose an 97 

alternative approach called Neural Network Filtered Backprojection (NN-FBP) that was first 98 

described in [27], which can effectively exploit sample characteristics to improve reconstruction 99 

quality, while still being highly computationally efficient. Here, we apply this new technique for 100 

the first time to electron tomography data. The application of NN-FBP to electron tomography 101 

consists of two phases: (i) a learning phase, in which full tilt series and their corresponding 102 

reconstructions are used to calibrate the reconstruction algorithm and (ii) a reconstruction phase, 103 

in which large batches of limited tilt series (i.e. using fewer projections) are rapidly 104 

reconstructed. A schematic overview the NN-FBP method is given in Figure 2. In the next 105 

subsections, we will first briefly explain how the reconstructions are formed in the reconstruction 106 

phase, followed by an overview of how the calibration is performed in the learning phase. 107 

  108 



 7 

Reconstruction phase  109 

Reconstructions obtained by standard Weighted Backprojection are commonly plagued by a 110 

range of reconstruction artefacts when reconstructing from a limited tilt range and few projection 111 

angles. Streaks can be observed due to the limited number of projections, and the limited angular 112 

range leads to elongation and blurring in the Z-direction. In [27], it was found that strong 113 

improvements on the reconstruction quality from limited data can be obtained by combining a 114 

small number (e.g. 2 or 4) of WBP reconstructions, each obtained using a different filter. 115 

In the reconstruction phase, the NN-FBP algorithm computes a reconstructed volume from 116 

limited projection data by combining multiple WBP reconstructions with different filters into a 117 

single reconstruction. A key ingredient of the algorithm is the application of a pixel-wise 118 

nonlinear scaling operation to each of the WBP images. Following this operation, the images are 119 

combined by taking a weighted sum of the scaled WBP images. As a final step, another 120 

nonlinear scaling operation is applied to this combined image (see reconstruction phase in Figure 121 

2). 122 

Note that without these nonlinear scaling operations, the final reconstruction can also be 123 

obtained by first creating a weighted sum of the different filters, and performing a Weighted 124 

Backprojection with the resulting filter, as the WBP algorithm is a linear method with respect to 125 

the used filter. Because of this, such a method will not be able to produce more accurate 126 

reconstructions than standard Weighted Backprojection with an appropriately chosen filter. Also, 127 

because of the nonlinear scaling operation, it is not possible to directly compare the filters of the 128 

NN-FBP method with standard filters for WBP. 129 

By using the nonlinear scaling operation, the NN-FBP algorithm is able to reduce the artefacts 130 

that are usually present in standard Weighted Backprojection reconstructions when only a small 131 
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number of projections are available. An example image with standard Weighted Backprojection, 132 

a linear combination of two Weighted Backprojections, and a combination of two Weighted 133 

Backprojections with nonlinear scaling is shown in Figure 3. As expected, the figure shows that 134 

the linear combination is identical to a single Weighted Backprojection reconstruction, while the 135 

combination with nonlinear scaling is significantly more accurate. 136 

 137 

Figure 2. Schematic overview of the NN-FBP procedure. In the learning phase, the extended 138 

acquisition series are used as an input to learn filters and weights specific to the training objects. 139 

In the reconstruction phase, the learned filters are used in multiple WBP reconstructions with an 140 

additional pixel-wise nonlinear scaling operation, which are combined to obtain a single 141 

reconstruction of a limited tilt series. 142 

 143 

Learning phase 144 

The question remains how the different filters and weights have to be chosen, such that the 145 

method produces accurate reconstructions. In [27], it is shown that ideas from artificial neural 146 

network theory can be used to find good filters and weights. Specifically, filters and weights can 147 

be learned by the NN-FBP method in a separate learning phase, in which the method is 148 
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presented with high-quality reconstructions of a set of training objects. In artificial neural 149 

network theory, this technique is called supervised learning. In the learning phase, the filters and 150 

weights are iteratively adjusted until the NN-FBP reconstructions match the presented high-151 

quality reconstructions. Afterwards, the trained filters and weights can be used to accurately 152 

reconstruct objects that are similar to the ones used for training, using only a limited number of 153 

projections. The angle distribution of the limited number of projections has to be specified 154 

during the learning phase, and the learned filters and weights will be specific to the chosen 155 

distribution. To reduce the influence of the specific angles that are chosen, NN-FBP uses angle-156 

independent filters, i.e. the same filters are used for each projection. An important requirement of 157 

the NN-FBP method is that the reconstructed objects should consist only of materials that were 158 

also present in the training objects. When this requirement is satisfied, the NN-FBP method is 159 

able to produce accurate reconstructions, even for objects with different shapes and/or sizes as 160 

the training objects. A schematic overview of both the learning phase and subsequent 161 

reconstruction of the NN-FBP method is given in Figure 2. 162 

As opposed to previous advanced reconstruction methods, specific prior knowledge is not 163 

explicitly used in the NN-FBP method. Instead, the method learns to exploit certain 164 

characteristics of the training objects by adjusting the filters and weights appropriately. Because 165 

the exploited characteristics are learned automatically by the method, it has a broader 166 

applicability than previous advanced 3D reconstruction methods. Also, since NN-FBP is based 167 

on the efficient Weighted Backprojection algorithm, it is computationally efficient as well, 168 

enabling high throughput of 3D reconstructions. An additional advantage is that existing 169 

implementations of the Weighted Backprojection algorithm can be used to easily implement the 170 

NN-FBP method. A final advantage is that it is possible to include the segmentation step in the 171 
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NN-FBP method by using segmented high-quality reconstructions of the training objects in the 172 

learning phase. In this case, the NN-FBP method will reconstruct objects with voxel values that 173 

are very close to their segmented value, and the final segmentation can be performed by simple 174 

rounding to the nearest segmented value. This removes the need for manual segmentation, which 175 

can be problematic for other methods when only a limited set of projections is available. 176 

 177 

Figure 3. Three reconstructions of a phantom image from 10 projections: (a) the phantom image, 178 

(b) WBP with a single filter, (c) a linear combination of two WBP reconstructions, and (d) a 179 

combination of two WBP reconstructions with a pixel-wise nonlinear scaling operation. In each 180 

reconstruction, the weights and filters are chosen such that the mean squared error with the 181 

phantom image is minimized. 182 
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3. Results 183 

3.1 Qualitative results 184 

In a first experiment, tilt series of a nanosphere, a nanorod and a nanotriangle are acquired over 185 

an angular tilt range of ± 75° with a tilt increment of 1˚. These three series are used as training 186 

series, resulting in a set of filters that will be used during the NN-FBP approach. The resulting 187 

NN-FBP algorithm is applied to a limited tilt series that was acquired from a different 188 

nanotriangle. Although only 10 projection images obtained over a range of ± 75° are used during 189 

the NN-FBP reconstruction, it needs to be pointed out that we also acquired an extended series of 190 

151 projection images. The SIRT reconstruction of the extended dataset was used as ground 191 

truth, in order to evaluate the NN-FBP outcome. Figure 4.a presents a volume rendering of this 192 

full range SIRT reconstruction. In all experiments, we used 200 iterations for the SIRT 193 

reconstructions, which was empirically verified to produce accurate reconstructions. The result 194 

of the NN-FBP algorithm is shown in Figure 4.b. It must be stressed that in this case only 10 195 

projection images were used. It can be seen that the 3D volume visualisation of the NN-FBP 196 

reconstruction is in very good agreement with the SIRT reconstruction of the full data series.  197 

The top and side facet can clearly be distinguished in the corresponding orthoslices in Figures 198 

4.e,i,m and f,j,n. On the other hand, when comparing the SIRT reconstruction based on the 199 

extended series with the SIRT reconstruction based on 10 projection images (Figures 4.c,g,k,o), 200 

it can be seen that the faceted shape is less pronounced. In the WBP reconstruction applied on 10 201 

projection images (Figures 4.d,h,l,p), severe noise and streaking artefacts can be distinguished. 202 

These artefacts can be prohibitive for further analysis of the scanned object, such as volume or 203 

shape calculations. Therefore, the WBP reconstruction will be left out in the further analysis. The 204 

benefits of NN-FBP become obvious; the number of images required for a 3D reconstruction 205 
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using NN-FBP is reduced by a factor of 15, but the quality is comparable to a reconstruction 206 

based on a full data series with a tilt increment of 1°.  207 

In Figures 5 and S1, results for a nanosphere and a nanorod are presented, respectively. Here, 208 

the training of the filters was again obtained by 3 training series. For the nanosphere, extended 209 

series of the nanorod and both nanotriangles were used. The training step for the nanorod was 210 

performed by the extended series of the nanosphere and both nanotriangles. These nanostructures 211 

yield fewer facets and as a consequence, the general morphology as visualised in Figures 5.b,c 212 

and S1.b,c appears to be better preserved when using only 10 projections. However, missing 213 

wedge artefacts can be clearly seen in the orthoslices presented in Figures 5.f,i,l and S1.f,i,l. 214 

Because of such artefacts, some features of the morphology indicated by white arrows in both the 215 

orthoslices through the full SIRT reconstruction (Figure 5.d,g,j) and the NN-FBP reconstruction 216 

(Figure 5.e,h,k) are not clearly visible in the orthoslices through the limited SIRT reconstruction 217 

(Figure 5.f,i,l).  218 

 219 

3.2 Quantitative results 220 

As a quantitative measure, a difference reconstruction for the nanosphere is constructed by 221 

substracting the SIRT (Figure 6.a) and NN-FBP reconstructions based on 10 projection images 222 

(Figure 6.b) from the full SIRT reconstruction of the nanosphere. The threshold value for the full 223 

SIRT reconstruction is obtained from the histogram. The histogram of the limited SIRT 224 

reconstruction, however, is lagerly influenced by the lack of projection images. In Figure S2, 225 

comparisons are shown between the histograms of the full SIRT reconstruction and the limited 226 

SIRT reconstruction for each nanoparticle. Clearly, one would have trouble choosing correct 227 

threshold values on the basis of the limited SIRT histograms. Therefore, the same threshold 228 
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value as the full SIRT reconstruction is used for the limited SIRT reconstructions. Since the NN-229 

FBP reconstructions are already segmented, no threshold value is needed for them. Both from the 230 

visualisation in Figure 6.a, as well as the corresponding orthoslices through the difference 231 

reconstruction in Figure 6.c, the volume misinterpretation of the limited SIRT reconstruction is 232 

clearly detectable. The orthoslices through the limited SIRT difference reconstruction of the 233 

nanosphere show a thick white shell. Here, the larger amount of white pixels indicates a volume 234 

misinterpretation of 21.5% when using the SIRT algorithm on the dataset of only 10 projection 235 

images. From Figure 6.b and its corresponding orthoslices in Figure 6.d, it is clear that the 236 

volume reconstructed with NN-FBP on 10 projection images is close to the actual volume. The 237 

NN-FBP reconstruction has only 1.6% of volume underestimation. For the nanorod (Figure S3), 238 

the volume for SIRT applied to a limited dataset results in an underestimation of 13.1%. The 239 

NN-FBP reconstruction leads to a misinterpretation of only 2.3%. For the nanotriangle, the 240 

volume misinterpretation for the limited SIRT reconstruction equals 2.7%.  When reconstructing 241 

the 10 projection dataset with the NN-FBP algorithm, the volume misinterpretation equals 2.4%. 242 

For the nanotriangle, the volume misinterpretation of the limited SIRT reconstructions is close to 243 

the misinterpretation of the NN-FBP reconstruction. In this case, however, the volume 244 

misinterpretation of the limited SIRT reconstruction gives a misleading result, due to a volume 245 

underestimation at the center of the nanotriangle and a volume overestimation at the tips of the 246 

nanotriangle. In general, the volume misinterpretation can be misleading due to the canceling out 247 

of overestimation and underestimation. Clearly, the evaluation of the quality of the 248 

reconstruction can not only be based on an inspection of the volume error.  Therefore, the shape 249 

error is introduced, which corresponds to the number of voxels that are labelled differently in the 250 

segmentations of the limited data reconstructions in comparison to the full SIRT reconstruction. 251 
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In this manner, both the local volume underestimation at the center as well as the volume 252 

overestimation at the tips is taken into account. For the nanotriangle, there is a 16.5% shape 253 

misinterpretation for the limited SIRT reconstruction (Figure S4). The shape error for the NN-254 

FBP reconstruction equals 7.5%, which is clearly smaller in comparison to the shape error of the 255 

limited SIRT reconstruction. An extended investigation of the influence of the chosen threshold 256 

value on the shape error and volume error of the limited SIRT reconstructions is shown in Figure 257 

S5. Note that from Figure S5, one can conclude that the errors depend heavily on the chosen 258 

threshold value, showing the difficulties one would have when choosing a threshold value both 259 

optimizing shape and volume error for limited SIRT reconstructions. 260 

 261 
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Figure 4. Reconstructed volumes of a nanotriangle using (a) the full dataset of 151 projections 262 

and the SIRT algorithm, and a limited dataset of only 10 projections using (b) the NN-FBP, (c) 263 

the SIRT and (d) the WBP algorithm. Xy, xz and yz orthoslices through the (e,i,m) full SIRT, 264 

(f,j,n) the NN-FBP, (g,k,o) the limited SIRT and (h,l,p) the limited WBP reconstructions of the 265 

nanotriangle. 266 

 267 
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Figure 5. Reconstructed volumes of a nanosphere using (a) the full dataset of 151 projections 269 

and the SIRT algorithm, and a limited dataset of only 10 projections using (b) the NN-FBP and 270 

(c) the SIRT algorithm. Xy, xz and yz orthoslices through the (d,g,j) full SIRT, (e,h,k) the NN-271 

FBP and (f,i,l) the limited SIRT reconstructions of the nanosphere. The white arrows indicate the 272 

presence of surface roughnesses. It is clear that these features are visible both in the orthoslices 273 

through the full SIRT as in the orthoslices through the NN-FBP reconstruction; however, in the 274 

limited SIRT reconstruction they are not detectable. 275 

  276 

Figure 6. Difference reconstructions of the nanosphere constructed by substracting (a) the SIRT 277 

and (b) NN-FBP reconstruction of 10 projection images from the full SIRT reconstruction 278 

representing the missing volume and its orthoslices (c) and (d), respectively. The volume 279 

misinterpretation for the NN-FBP reconstruction equals only 1.6%, which is indicated by the fine 280 

shell of the difference reconstruction. The thicker shell present in the difference reconstruction of 281 

the limited SIRT equals a volume misinterpretation of 21.5%. 282 

  283 
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3.3 Statistical results 284 

In general it is difficult to obtain statistical results when applying electron tomography. As 285 

pointed out previously, the acquisition of tilt series for electron tomography is very time 286 

consuming and a large electron dose is required in the case of small tilt increments. The NN-FBP 287 

algorithm is therefore of great interest as it can be applied to reduce the acquisition time. In this 288 

manner a large set of nanostructures can be investigated in an efficient manner, leading to 289 

statistical results. Using the NN-FBP approach explained above, training was performed on a set 290 

of 20 nanoparticles, and a total of 71 nanospheres was investigated. The number of nanoparticles 291 

to train on was chosen empirically, such that there were both enough particles to use in the 292 

learning phase, and enough particles to obtain statistical results from. In Figure 7, the distribution 293 

of the radii of these nanospheres is evaluated. In order to investigate the reliability of the NN-294 

FBP approach, extended tilt series of 151 images were acquired for all particles. The outcome of 295 

the NN-FBP algorithm and the SIRT algorithm, using only 10 projections, is then compared to 296 

the measurements based on the SIRT reconstruction using 151 projections. The distribution 297 

indicated in grey in Figure 7 presents the radii distribution for the nanospheres reconstructed 298 

using SIRT applied to limited datasets and clearly gives a different distribution in comparison to 299 

the radii distribution of the full SIRT reconstruction, which is presented in white. The average 300 

radius found in this manner equals (24.1 ± 0.59) nm, which is significantly smaller than the 301 

actual radius which equals (27.1 ± 0.25) nm, found through the full SIRT reconstructions. As the 302 

optical properties, such as the absorption cross section, are dependent on the shape and size of 303 

the nanoparticles, it is of key importance to retrieve the real nanoparticle morphology. A 304 

difference of a few nanometer can already influence the outcome of the optical response [34,35]. 305 

The radii distribution of the NN-FBP reconstruction (black), however, is in good agreement with 306 
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the results extracted from the full SIRT data (white). The average radius of the NN-FBP 307 

reconstructed nanospheres equals (26.8 ± 0.29) nm. This value is in good agreement with the 308 

actual average radius and shows a clear overlap of the error bars. It is again clear that the SIRT 309 

algorithm can not provide reliable information when limited datasets are investigated. These 310 

results confirm the reliability of the NN-FBP algorithm and demonstrate the possibility of 311 

combining electron tomography and statistical measurements. 312 

 313 

Figure 7. Distribution of the radii of nanospheres reconstructed using SIRT on full datasets of 314 

151 projections (white), NN-FBP (black) and SIRT on limited datasets of 10 projections (grey). 315 

The distributions of SIRT full and NN-FBP 10 projections are in good agreement. When SIRT is 316 

applied on the limited datasets, a different distribution is found due to the misinterpretation of the 317 

volume. 318 

 319 

4. Conclusion 320 

We have shown that the NN-FBP reconstruction algorithm is able to yield electron tomography 321 

reconstructions based on highly limited data with a comparable quality to a reconstruction based 322 
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on a full data series with a tilt increment of 1°. The decrease in acquisition time and the use of an 323 

efficient reconstruction method enables us to examine a broad range of nanostructures in a 324 

statistical manner. The NN-FBP algorithm also has promising prospects for the 3D investigation 325 

of beam sensitive samples, where only a limited amount of projection images need to be 326 

acquired. 327 
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