toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Modeling of the formation and transport of nanoparticles in silane plasmas Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 056407,1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) The behavior of nanoparticles in a low-pressure silane discharge is studied with the use of a self-consistent one-dimensional fluid model. Nanoparticles of a given (prescribed) radius are formed in the discharge by the incorporation of a dust growth mechanism, i.e., by including a step in which large anions (typically Si12H−25), produced in successive chemical reactions of anions with silane molecules, are transformed into particles. Typically a few thousand anions are used for one nanoparticle. The resulting particle density and the charge on the particles are calculated with an iterative method. While the spatial distribution and the charge of the particles are influenced by the plasma, the presence of the nanoparticles will in turn influence the plasma properties. Several simulations with different particle radii are performed. The resulting density profile of the dust will greatly depend on the particle size, as it reacts to the shift of the balance of the different forces acting on the particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225970700092 Publication Date 2004-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49432 Serial 2132  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. doi  openurl
  Title Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges Type A1 Journal article
  Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 9 Pages 4123-4134  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) The behavior of hydrocarbon species at step edges of diamond terraces is investigated by means of combined molecular dynamics−Metropolis Monte Carlo simulations. The results show that the formation of ballas-like diamond films (like UNCD) and well-faceted diamond films (like NCD) can be related to the gas phase concentrations of CxHy in a new manner: Species that have high concentrations above the growing UNCD films suppress the extension of step edges through defect formation. The species that are present above the growing NCD film, however, enhance the extension of diamond terraces, which is believed to result in well-faceted diamond films. Furthermore, it is shown that, during UNCD growth, CxHy species with x ≥ 2 play an important role, in contrast to the currently adopted CVD diamond growth mechanism. Finally, the probabilities for the extension of the diamond (100) terrace are much higher than those for the diamond (111) terrace, which is in full agreement with the experimental observation that diamond (100) facets are more favored than diamond (111) facets during CVD diamond growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281353900042 Publication Date 2010-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 11 Open Access  
  Notes Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:83696 Serial 694  
Permanent link to this record
 

 
Author Freire, J.A.K.; Freire, V.N.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Exciton trapping in a periodically modulated magnetic field Type A1 Journal article
  Year 2002 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys  
  Volume 32 Issue 2 Pages 310-313  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The behavior of excitons in spatially modulated magnetic fields is described taking into account the exciton spin contribution. The results show that the exciton trapping in periodic magnetic fields is possible and dependent on the modulation profile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication São Paulo Editor  
  Language Wos 000176522000016 Publication Date 2005-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.732 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.732; 2002 IF: 0.678  
  Call Number UA @ lucian @ c:irua:94923 Serial 1120  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M. url  doi
openurl 
  Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 10 Pages 104524-104524,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282269600005 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85419 Serial 1337  
Permanent link to this record
 

 
Author Van Tendeloo, G.; op de Beeck, M.; De Meulenaere, P.; van Dyck, D. openurl 
  Title Towards quantitative high resolution electron microscopy? Type A1 Journal article
  Year 1995 Publication Institute of physics conference series Abbreviated Journal  
  Volume 147 Issue Pages 67-72  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (down) The basics of the interpretation of high resolution images showing detail of the order of 0.1 nm are shortly explained here. The use of a field emission source, a CCD camera and an adapted reconstruction method for restoring the projected crystal potential (focus variation method) allows a quantitative interpretation of HREM images. Examples of partially disordered alloys and carbonate ordering in high Tc superconductors are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1995BE67F00014 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0357-3; 0951-3248; 0305-2346 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13015 Serial 3688  
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M. pdf  url
doi  openurl
  Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
  Year 2024 Publication Nature Abbreviated Journal Nature  
  Volume 630 Issue 8017 Pages 619-624  
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;  
  Abstract (down) The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links  
  Impact Factor 64.8 Times cited Open Access  
  Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number CMT @ cmt @ Serial 9247  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rodriguez, J.A.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 26 Pages 265502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465887100001 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 10 Open Access  
  Notes ; This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216; and the partial support of DGAPA-UNAM project IN114817-3. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; DGTIC-UNAM under project LANCAD-UNAM-DGTIC-150, and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:160216 Serial 5236  
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M. url  doi
openurl 
  Title Spin-orbit interaction controlled properties of two-dimensional superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 115302-115302,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The band structure of two-dimensional artificial superlattices in the presence of (Rashba-type) spin-orbit interaction (SOI) is presented. The position and shape of the energy bands in these spintronic crystals depend on the geometry as well as the strength of the SOI, which can be tuned by external gate voltages. For finite mesoscopic arrays, we show that their conductance properties and possible applications can be understood from these spin-dependent band diagrams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281516300005 Publication Date 2010-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. M045596. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84259 Serial 3092  
Permanent link to this record
 

 
Author Kukhlevsky, S.V.; Mechler, M.; Csapó, L.; Janssens, K.; Samek, O. doi  openurl
  Title Resonant backward scattering of light by a subwavelength metallic slit with two open sides Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 16 Pages 165421,1-165421,7  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) The backward scattering of TM-polarized light by a two-side-open subwavelength slit in a metal film is analyzed. We show that the reflection coefficient versus wavelength possesses a Fabry-Perot-like dependence that is similar to the anomalous behavior of transmission reported in the study [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)]. The open slit totally reflects the light at the near-to-resonance wavelengths. In addition, we show that the interference of incident and resonantly backward-scattered light produces in the near-field diffraction zone a spatially localized wave whose intensity is 10103 times greater than the incident wave, but one order of magnitude smaller than the intracavity intensity. The amplitude and phase of the resonant wave at the slit entrance and exit are different from that of a Fabry-Perot cavity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232934900123 Publication Date 2005-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ admin @ c:irua:71385 Serial 5815  
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M. doi  openurl
  Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 26 Pages 261904-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000329977400022 Publication Date 2013-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 74 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:114849 Serial 2837  
Permanent link to this record
 

 
Author McNaughton, B.; Milošević, M.V.; Perali, A.; Pilati, S. url  doi
openurl 
  Title Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks Type A1 Journal article
  Year 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 101 Issue 5 Pages 053312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The autoregressive neural networks are emerging as a powerful computational tool to solve relevant problems in classical and quantum mechanics. One of their appealing functionalities is that, after they have learned a probability distribution from a dataset, they allow exact and efficient sampling of typical system configurations. Here we employ a neural autoregressive distribution estimator (NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model of spin-glass theory, namely, the two-dimensional Edwards-Anderson Hamiltonian. We show that a NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning from system configurations generated using standard MCMC algorithms. The trained NADE is then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows us to perform efficient MCMC simulations, which provide unbiased results even if the expectation value corresponding to the probability distribution learned by the NADE is not exact. Notably, we implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower temperature. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime, avoiding the divergent correlation times that plague MCMC simulations driven by local-update algorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state configurations, paving the way to their future utilization to tackle binary optimization problems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535862000014 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 15 Open Access  
  Notes ; The authors thank I. Murray, G. Carleo, and F. RicciTersenghi for useful discussions. Financial support from the FAR2018 project titled “Supervised machine learning for quantum matter and computational docking” of the University of Camerino and from the Italian MIUR under Project No. PRIN2017 CEnTraL 20172H2SC4 is gratefully acknowledged. S.P. also acknowledges the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support. M.V.M. gratefully acknowledges the Visiting Professorship program at the University of Camerino that facilitated the collaboration in this work. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170244 Serial 6463  
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D. pdf  url
doi  openurl
  Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 90 Issue 24 Pages 241911-241913  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (down) The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000247305400033 Publication Date 2007-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596  
  Call Number UA @ lucian @ c:irua:102671 Serial 3158  
Permanent link to this record
 

 
Author Akande, S.O.; Samanta, B.; Sevik, C.; Cakir, D. doi  openurl
  Title First-principles investigation of mechanical and thermal properties of M Al B (M = Mo, W), Cr₂ AlB₂, and Ti₂ In B₂ Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 20 Issue 4 Pages 044064-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The atomically laminated layered ternary transition-metal borides (the MAB phases) have demonstrated outstanding properties and have been applied in various fields. Understanding their thermal and mechanical properties is critical to determining their applicability in various fields such as high-temperature applications. To achieve this, we conducted first-principles calculations based on density-functional theory and the quasiharmonic approximation to determine the thermal expansion coefficients, Gruneisen parameters, bulk moduli, hardness, thermal conductivity, electron-phonon coupling parameters, and the structural and vibrational properties of MoAlB, WAlB, Cr2AlB2, and Ti2InB2. We found varying degrees of anisotropy in the thermal expansion and mechanical properties in spite of similarities in their crystal structures. MoAlB has a mild degree of anisotropy in its thermal expansion coefficient (TEC), while Cr2AlB2 and WAlB display the highest level of TEC anisotropy. We assessed various empirical models to calculate hardness and thermal conductivity, and correlated the calculated values with the material properties such as elastic moduli, Gruneisen parameter, Debye temperature, and type of bonding. Owing to their higher Gruneisen parameters, implying a greater degree of anharmonicity in lattice vibrations and lower phonon group velocities, MoAlB and WAlB have significantly lower lattice thermal conductivity values than those of Cr2AlB2 and Ti2InB2. The hardness and lattice thermal conductivity of MAB phases can be predicted with high accuracy if one utilizes an appropriate model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106456600003 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:202078 Serial 9037  
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
  Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 210 Issue 210 Pages 185-193  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000353733300024 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453  
  Call Number c:irua:126006 Serial 715  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. url  doi
openurl 
  Title Ab initio based atomic scattering amplitudes and {002} electron structure factors of InxGa1-xAs/GaAs quantum wells Type A1 Journal article
  Year 2010 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 209 Issue 1 Pages 012040,1-012040,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) The atomic scattering amplitudes of the various atoms of the systems Ga1−xInxAs, GaAs1−xNx and InAs1−xNx are calculated using the density functional theory (DFT) approach. The scattering amplitudes of N, Ga, As and In in the model systems are compared with the frequently used Doyle and Turner values. Deviation from the latter values is found for small scattering vectors (s<0.3Å−1) and for these scattering vectors dependence on the orientation of the scattering vector and the chemical environment is reported. We suggest a parametrization of these modified scattering amplitudes (MASAs) for small scattering vectors (s<1.0Å−1). The MASAs are exploited within zero pressure classical Metropolis Monte Carlo (MC), finite temperature calculations to investigate the effect of quantum well size on the electron {002} structure factor (SF) of Ga1−xInxAs quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000283739100040 Publication Date 2010-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85760 Serial 28  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue Pages 155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000020 Publication Date 2018-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074  
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Ball, J.M. pdf  doi
openurl 
  Title Nano-structures at martensite macrotwin interfaces in Ni65Al35 Type A1 Journal article
  Year 2003 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 51 Issue 5 Pages 1421-1436  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35 material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular {110} austenite planes, enclose a final angle larger or smaller than 90degrees. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwinvariants are observed. The most reproducible deformations occur in a region of approximately 5-10 nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000181677700018 Publication Date 2003-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 31 Open Access  
  Notes Approved Most recent IF: 5.301; 2003 IF: 3.059  
  Call Number UA @ lucian @ c:irua:48364 Serial 2248  
Permanent link to this record
 

 
Author Martens, T.; Brok, W.J.M.; van Dijk, J.; Bogaerts, A. doi  openurl
  Title On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 12 Pages 122002,1-122002,5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature. If during the electrical current pulse a glow discharge is reached, then this pulse will last only a few microseconds in operating periods of sinusoidal voltage with lengths of about 10 to 100 µs. In this paper we demonstrate that right before a glow discharge is reached, the discharge very closely resembles the commonly assumed Townsend discharge structure, but actually contains some significant differing features and hence should not be considered as a Townsend discharge. In order to clarify this, we present calculation results of high time and space resolution of the pulse formation. The results indicate that indeed a maximum of ionization is formed at the anode, but that the level of ionization remains high and that the electric field at that time is significantly disturbed. Our results also show where this intermediate structure comes from.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000266639300002 Publication Date 2009-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:76458 Serial 2450  
Permanent link to this record
 

 
Author Canossa, S.; Ji, Z.; Wuttke, S. url  doi
openurl 
  Title Circumventing Wear and Tear of Adaptive Porous Materials Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1908547  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) The assessment of the architectural stability of molecular porous materials is not yet a common practice, but critical to their understanding and development. The conformational adaptation of porous materials to guest binding and other chemical dynamics poses a risk of architectural damage, leading to performance deterioration during their prolonged usage. The deformation of the framework backbone and the disconnection of building units are driven by chemical, mechanical, and thermal perturbations, and can be quantitatively described by the term connection completeness. Analytical means that can be used to measure this parameter are presented in order to provide a standard, practical protocol for evaluating architectural damage made to framework materials. Preventive and remedial strategies are proposed for enhancing the architectural integrity of frameworks without compromising their functional mechanisms, paving the way to the design of robust yet adaptive materials. In this way, the discussion on architectural stability is initiated, and readers are encouraged to carefully characterize molecular porous materials for a better understanding of their structure-property relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000511238300001 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZV120N ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:166505 Serial 6387  
Permanent link to this record
 

 
Author Godoi, R.H.M.; Carneiro, B.H.B.; Paralovo, S.L.; Campos, V.P.; Tavares, T.M.; Evangelista, H.; Van Grieken, R.; Godoi, A.F.L. pdf  doi
openurl 
  Title Indoor air quality of a museum in a subtropical climate : the Oscar Niemeyer museum in Curitiba, Brazil Type A1 Journal article
  Year 2013 Publication The science of the total environment Abbreviated Journal  
  Volume 452 Issue Pages 314-320  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) The assessment of damage to indoor cultural heritage, in particular by pollutants, is nowadays a major and growing concern for curators and conservators. Nevertheless, although many museums have been widely investigated in Europe, the effects of particulate matter and gaseous pollutants in museums under tropical and subtropical climates and with different economic realities are still unclear. An important portion of the world's cultural heritage is currently in tropical countries where both human and financial resources for preserving museum collections are limited. Hence, our aim is to assess the damage that can be caused to the artwork by pollution in hot and humid environments, where air quality and microclimatic condition differences can cause deterioration. As a case study, particulate matter as well as gases were collected at the Oscar Niemeyer Museum (MON) in Curitiba, Brazil, where large modern and contemporary works of art are displayed. NO2, SO2, O3, Acetic Acid, Formic Acids and BTEX, in the ambient air, were sampled by means of passive diffusive sampling and their concentrations were determined by IC or GCMS. The particulate matter was collected in bulk form and analyzed with the use of energy dispersive X-ray fluorescence and aethalometer. The chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis. The gaseous and particulate matter levels were then compared with the concentrations obtained for the same pollutants in other museums, located in places with different climates, and with some reference values provided by international cultural heritage conservation centers. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could contribute to the chemical reactions taking place on the surfaces of artifacts and which could potentially cause irreversible damage to the artworks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318530600034 Publication Date 2013-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:106766 Serial 8083  
Permanent link to this record
 

 
Author Yiu, H.H.P.; Niu, H.-jun; Biermans, E.; Van Tendeloo, G.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Designed multifunctional nanocomposites for biomedical applications Type A1 Journal article
  Year 2010 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 20 Issue 10 Pages 1599-1609  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA-16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29 cm3 g-1 accessible for drug storage. This iron oxide-silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA-16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual-targeting drug delivery mechanism, i.e., magnetic and antibody-targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence-magnetic dual-imaging diagnosis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000278597100008 Publication Date 2010-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 56 Open Access  
  Notes Approved Most recent IF: 12.124; 2010 IF: 8.508  
  Call Number UA @ lucian @ c:irua:83298 Serial 662  
Permanent link to this record
 

 
Author Quintana, M.; López, A.M.; Rapino, S.; Toma, F.M.; Iurlo, M.; Carraro, M.; Sartorel, A.; Maccato, C.; Ke, X.; Bittencourt, C.; Da Ros, T.; Van Tendeloo, G.; Marcaccio, M.; Paolucci, F.; Prato, M.; Bonchio, M.; pdf  doi
openurl 
  Title Knitting the catalytic pattern of artificial photosynthesis to a hybrid graphene nanotexture Type A1 Journal article
  Year 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 7 Issue 1 Pages 811-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) The artificial leaf project calls for new materials enabling multielectron catalysis with minimal overpotential, high turnover frequency, and long-term stability. Is graphene a better material than carbon nanotubes to enhance water oxidation catalysis for energy applications? Here we show that functionalized graphene with a tailored distribution of polycationic, quaternized, ammonium pendants provides an sp(2) carbon nanoplatform to anchor a totally inorganic tetraruthenate catalyst, mimicking the oxygen evolving center of natural PSII. The resulting hybrid material displays oxygen evolution at overpotential as low as 300 mV at neutral pH with negligible loss of performance after 4 h testing. This multilayer electroactive asset enhances the turnover frequency by 1 order of magnitude with respect to the isolated catalyst, and provides a definite up-grade of the carbon nanotube material, with a similar surface functionalization. Our innovation is based on a noninvasive, synthetic protocol for graphene functionalization that goes beyond the ill-defined oxidation-reduction methods, allowing a definite control of the surface properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314082800088 Publication Date 2012-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 69 Open Access  
  Notes 246791 COUNTATOMS; 262348 ESMI; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:107707 Serial 1766  
Permanent link to this record
 

 
Author Rather, J.A.; Debnath, P.; De Wael, K. pdf  doi
openurl 
  Title Fullerene-\beta-cyclodextrin conjugate based electrochemical sensing device for ultrasensitive detection of p-nitrophenol Type A1 Journal article
  Year 2013 Publication Electroanalysis Abbreviated Journal Electroanal  
  Volume 25 Issue 9 Pages 2145-2150  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) The article describes the use of a fullerene (C60)-β-cyclodextrin conjugate, synthesized via 1,3-dipolar cycloaddition, for the ultrasensitive electrochemical detection of p-nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p-nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p-nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10−9 mol L−1 to 4.2×10−7 mol L−1 and the detection limit was calculated to be 1.2×10−9 mol L−1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327590600017 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.851 Times cited 13 Open Access  
  Notes ; Jahangir Ahmad Rather is highly thankful for mobility grant provided by the Belspo co-funded by Marie Curie Actions. ; Approved Most recent IF: 2.851; 2013 IF: 2.502  
  Call Number UA @ admin @ c:irua:110033 Serial 5629  
Permanent link to this record
 

 
Author Storms, H.M.; Janssens, K.H.; Török, S.B.; Van Grieken, R.E. doi  openurl
  Title Evaluation of the ArmstrongBuseck correction for automated electron probe X-ray microanalysis of particles Type A1 Journal article
  Year 1989 Publication X-ray spectrometry Abbreviated Journal  
  Volume 18 Issue 2 Pages 45-52  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) The ArmstrongBuseck correction for absorption effects in electron probe x-ray microanalysis of particles considers seven specific particle shapes, and for these geometries exact correction equations are used. This procedure implies that the analyst has to associate the particle to be analysed with a certain particle type; an arbitrary relative thickness is sometimes assumed. A theoretical study was made of this absorption correction as a function of the particle composition, type and thickness for micrometre-sized particles. It appears that a correct choice of the particle type is critical. However, when the analytical results are normalized to 100%, the differences between the models are much less pronounced, and it is justified to assume a spherical model in all cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1989U261400001 Publication Date 2005-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116489 Serial 5616  
Permanent link to this record
 

 
Author Patiño, Y.; Pilehvar, S.; Díaz, E.; Ordóñez, S.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical reduction of nalidixic acid at glassy carbon electrodemodified with multi-walled carbon nanotubes Type A1 Journal article
  Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 323 Issue B Pages 621-631  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT −MWCNT-COOH and MWCNT-NH2was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT > MWCNT-NH2 > MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH = 5.0, deposition time = 20 s and volume of MWCNT = 10 μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A = 8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LCMS).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390513700004 Publication Date 2016-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 4 Open Access  
  Notes ; This work was supported by the Spanish Government (contract CTQ2011-29272-C04-02) and by the Government of the Principality of Asturias (contract FC-15-GRUPIN14-078). Y. Patifio thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program). S.P. and K.D.W. are thankful to UA for DOCPRO financial support. ; Approved Most recent IF: 6.065  
  Call Number UA @ admin @ c:irua:136108 Serial 5594  
Permanent link to this record
 

 
Author Thomassen, G.; Dewulf, J.; Van Passel, S. pdf  url
doi  openurl
  Title Prospective material and substance flow analysis of the end-of-life phase of crystalline silicon-based PV modules Type A1 Journal article
  Year 2022 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 176 Issue Pages 105917  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract (down) The approaching end-of life phase of early installed PV modules gave rise to a variety of potential end-of-life strategies, ranging from basic generic waste management strategies to advanced case-specific recycling options. However, no comprehensive assessment on the full range of technological possibilities is available and only limited attention was given to the material recovery rates of these different technologies in light of circular economy. In addition, current material recovery rates are indifferent towards the material value and the value of their secondary applications. Based on an extensive literature review, ten end-of-life scenarios with potential learning effects are identified and their material flows are quantified using a combined material and substance flow analysis. Subsequently, material recovery rates from a mass, economic value and embodied energy perspective are calculated, incorporating the differences in secondary applications. The differences in the mass-based recovery rates of the seven end-of-life scenarios that did not have landfill or municipal waste incineration as the main destination were minimal, as 73-79% of the mass was recovered for the best-case learning scenario. For the economic value recovery rate (9-66%) and the embodied energy recovery rate (18-45%), more profound differences were found. The collection rate was identified as most crucial parameter for all end-of-life scenarios, learning scenarios and recycling indicators. The mass-based recovery rate might favor end-of-life scenarios that lead to dissipation of valuable materials in non-functional secondary applications. Additional targets are required to avoid cascading of valuable materials and to avoid the economic cost and environmental burden of virgin materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708339400003 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.2  
  Call Number UA @ admin @ c:irua:182462 Serial 6939  
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C. url  doi
openurl 
  Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
  Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages 029501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600019 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:121371 Serial 1492  
Permanent link to this record
 

 
Author Darchuk, L.A.; Zaverbna, L.V.; Worobiec, A.; Van Grieken, R. doi  openurl
  Title Structural features of human tooth tissues affected by high dose of external ionizing radiation after nuclear catastrophe of Chernobyl plant Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal  
  Volume 97 Issue 2 Pages 282-285  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract (down) The application of micro-Raman spectroscopy is discussed for the analysis of structural features of human tooth tissues affected by high doses of external ionizing radiation (0.51.7 Gy) after the nuclear plant catastrophe in Chernobyl in 1986. The results have shown significant changes in the mineral matrix of dental enamel that lead to the decrease of tooth enamel hardness. Destruction of the collagen chain of the organic matrix has been observed for dentin and cementum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286558200029 Publication Date 2010-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:86818 Serial 8585  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.; url  doi
openurl 
  Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371398000007 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132352 Serial 4213  
Permanent link to this record
 

 
Author Huyskens, C.; Brauns, E.; van Hoof, E.; Diels, L.; de Wever, H. doi  openurl
  Title Validation of a supervisory control system for energy savings in membrane bioreactors Type A1 Journal article
  Year 2011 Publication Water research Abbreviated Journal  
  Volume 45 Issue 3 Pages 1443-1453  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) The application of fixed operational protocols and settings for membrane bioreactors (MBR) often leads to suboptimal filtration conditions due to the dynamic nature of mixed liquor characteristics. With regard to process optimization and energy savings, the potential benefits of a dynamic control system, enabling to adapt fouling control actions (ACS outputs) in an automated way to the actual mixed liquor fouling propensity, are thus obvious. In this paper, the pilot-scale validation of such an advanced control system (ACS) is elaborated. A specific on-line fouling measurement method, the MBR-VFM (VITO Fouling Measurement), was used for the evaluation of the mixed liquors reversible fouling propensity, which was used as a primary ACS input parameter. A first series of tests with a gradual increase in complexity of the selected input and output parameters indicated the functionality of the ACS and demonstrated a substantial reduction of aeration, however sometimes at the expense of a higher fouling rate. The ACS was further fine-tuned and subsequently tested for a longer period under more dynamic operating conditions. A significant correlation was found between the reversible fouling potential measured by the MBR-VFM and the on-line permeability, indicating that the MBR-VFM is a suitable ACS input. Furthermore, an average 22% reduction in aeration flow to the membranes could be achieved without any obvious negative effect on filtration performance. This indicates that this approach is promising to optimize energy consumption in MBRs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287054500047 Publication Date 2010-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:88400 Serial 8728  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: