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The behavior of excitons in spatially modulated magnetic fields is described taking into account the
exciton spin contribution. The results show that the exciton trapping in periodic magnetic fields is

possible and dependent on the modulation profile.

I Introduction

In view of recent developments in nanotechnology fab-
rication, the study of charged particles under the influ-
ence of nonhomogeneous magnetic fields have been the
subject of a great number of theoretical [1] and exper-
imental [2] investigations. Among these systems, the
magnetotransport through spatially periodic magnetic
fields has recently yielded very interesting results. Sev-
eral works have been performed on the possibilities of
exciton trapping by using nonhomogeneous stress [3]
and spatially varying electric fields [4].

Recently, circular magnetic fields profiles were used
to induce exciton trapping [5]. In these magnetic sys-
tems, the low-field gradient region creates a minimum
in the effective confinement potential for the excitons.
Thus, they can be trapped in the magnetic field in-
homogeneity. To the best of our knowledge, the con-
finement of excitons in periodic magnetic fields has
not been investigated. The purpose of this work is to
present results on the behavior of excitons in spatially
modulated magnetic fields.

IT The modulated magnetic field
structure

One dimensional periodic magnetic profiles can be cre-
ated, e.g., by the deposition of ferromagnetic films or
stripes on top of a semiconductor heterostructure, with
a homogeneous magnetic field applied perpendicularly
to the plane of the structure [6]. These films are pat-
terned in such a way that the magnetic domains consists
of parallel stripes with magnetization perpendicular or
parallel to the film, changing sign from one stripe to the

next, giving rise to a periodically modulated magnetic
field in the plane of the semiconductor structure (see
sketch in Fig. 1(a)).

Assuming a magnetization perpendicular to the xy
plane, with boundaries z € (—a/2,a/2), y € (—00, ),
and z € (—h/2,h/2), where a and h is the stripe width
and thickness, respectively, the corresponding equation
for the z component of the magnetic field emerging from
one stripe can be written as follows [1, 6]:

B.(z) = B, + Bi(z,z + h/2) — Bi(z,z — h/2), (1)

where B, (z,z) = (uoM/27) [arctan (¢;.) — arctan (c_)],
¢y = (z £0.5a)/z, M is the stripe magnetization, z is
the distance of the center of the stripe to the quantum
well, and B, the uniform magnetic field. The resulting
periodic magnetic field is a superposition of those due
to the individual magnetized stripes, in such a way
that:

o0

BI*l(z) = Y (-1)VB.(z — NI). (2)
N=—0c0

where N is the number of stripes and [ is a constant
related to the lattice periodicity. The magnetic field
profile for N = 4 is shown in Fig. 1 (b) (see dashed-
dotted line).

The Hamiltonian describing the exciton motion in a
nonhomogeneous magnetic field can be written as [6]:

H= HL(Zi)'i'W(ra Zeazh)+H2D(R7 r)+Hmz (X)a (3)

where HY(z;) = —(h?/2m})(8%/022) + Vi(z;) is the
Hamiltonian describing the electron and heavy-hole
confinement in the quantum well; W(r,z.,2,) =
(e2/e){v/r — [r* + (2. — 21)?]"/?} is related to the
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difference between the 2D and 3D Coulomb interaction
and is treated as a perturbation;

H?P(R,r) = HM(R) + H™(r,R, Vp), (4)

with HOM(R) = —(h?/2M)V% and H™!(r,R,VRg) =
—(h?/2u) V2 — (ve? [er) +u1 + uz, describes the exciton
motion in the zy plane subjected to the periodic mag-
netic field B.(X), where r and R are the exciton rela-
tive and center-of-mass motion coordinates, r = r, —rp
and R = (m}r. +mjry) /M, respectively, with the to-
tal exciton mass M = (m} +mj); w1 (u2) is related to
the first (second) order dependence of the relative co-
ordinates with the nonhomogeneous magnetic field [6],
and p = mimj /M is the exciton reduced mass.
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Figure 1. (a) Experimental setup showing the stripe param-
eters: a (h) is the stripe width (thickness), d its distance to
the middle of the quantum well, M the magnetization, B, is
the applied magnetic field, and L is the quantum well width.
(b) Effective potential and respective magnetic field for the
exciton ground state as a function of the X coordinate. In
this figure, N =4, a = 0.5 pm, h = 0.2 pm, d = 0.08 pm,
B, =0T, and the iron magnetization M = 1740 emu/cm?’.

Finally, the last term in equation (3), i.e.,

1
UB ge,zSe,z - ggh,zjh,z BZ(X)a (5)

describes the exciton spin interaction with the non-
homogeneous magnetic field. In the above equation,
m, = =£1,+2 is the exciton quantum spin number
which is related to the electron (S.. = £1/2) and
heavy-hole (.Jp, . = £3/2) spin numbers, and ge . (gn 2)
is the electron (heavy-hole) g factor.

We used the adiabatic approach because the motion
in the z direction, the exciton relative motion and the
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spin motion are fast as compared to the center-of-mass
motion [6]. We also assume that all displacements are
decoupled from each other in such a way that one can
write the total exciton wave function as:

U= (R, 1, 26, 2n) = p(R)®(r) F (2, 21) L™ (R),  (6)

with p(R) = exp(iQyY )y (X), where Qy is the wave
vector of the center-of-mass motion in the Y direction
(exciton free direction).

The eigenvalues of the confinement in the quantum
well, the exciton relative and spin motion can be ob-
tained by applying the exciton Hamiltonian (Eq. (3))
to the above wave function [6]. For the exciton center-
of-mass motion, we obtain the following Schrédinger-
like equation:

{ d h? d

xarrmax V) +E} v =0

with

62/11 ar 5 -1

M= 1= S S pae] L )
h2 GZC /Bnr
verfixy) = 2 me ()2
X) = @ T gz o2 B
eh 1

+2_IUC£BZ(X)mr + §uBgezc,sz(X)- (9)

The above equation includes the different eigenval-
ues for the fast motion that contribute as an effective
potential and also results in an effective mass. Here,
apr and f)r (in units of ag‘l and a}f, respectively)
are constants related to the relative radial (n,) and an-
gular (m,) quantum numbers [5], ¢ = (m** +m}?)/M,
and gegze = ge,z + gn,z. The effective potential as a
function of the X coordinate is shown in Fig. 1(b).

IIT The exciton trapping energy

In order to estimate the exciton confinement, we have
defined the exciton trapping energy as the difference in
energy between an excitonic state in the homogeneous
applied field B, and its corresponding state in the peri-
odic magnetic field. As a consequence of this definition,
the Qy term that is not dependent on the magnetic
field ((h?/2M)Q%) is not included in the calculus of
E7, which greatly decreases the exciton dependence on
the wave vector Qy. Indeed, the influence of the first
term in Eq. (9) on the exciton confinement is so small
that it will not be further considered. In all our nu-
merical calculations, we have considered ¢ = 0.5 pm,
h =0.2 um, d = 0.08 um, and M = 1740 emu/cm? [3].

The trapping energy of the exciton ground state as
a function of the applied magnetic field B, is shown
in Fig. 2 for several number of stripes. The energies
related to the magnetic field created by one stripe are
completely different from the ones of the situation when
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N # 1, but they are very similar when N > 2 for both
spin orientation, i.e., they are independent of the stripe
numbers. The exception is the s = —1 spin state case,
which shows two different behaviors when N is even
and when it is odd.
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Figure 2. Trapping energy of the exciton ground state as a
function of the applied field B, for the number of stripes (a)
N =1,(b) N=2, (c) N =11 and (d) N = 20, with spin
m; = 0 (solid), m. = +1 (dashed), and m. = —1 (dotted).

Notice that the exciton is always trapped in the pe-
riodic magnetic potential when N is even, independent
of the spin orientation, which is not true when N is
odd. In this situation, the exciton is not trapped for
s=—1and B, > 0.

The angular momentum and spin interaction with
the magnetic field give the stronger contribution to the
confinement potential (see Eq. 11). The trapping en-
ergy for the exciton excited states 2p~, 2s, and 2p™T, as
a function of the applied field B, is shown in Fig. 3. No-
tice that the 2s state is an even function of the applied
magnetic field, and that the 2p~ and 2p™ states are
symmetric in B, with respect to each other. This can
be explained as follows: the 32 term (see Eq. (9)) gives
a stronger contribution as compared to 3}, but even in
this situation of zero angular momentum, the exciton
spin should dominate the effective potential equation.
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This does not occur because the exciton g factor for
a 80 A well width is very small (geze = —0.3). Also
due to the small g factor, the angular momentum gives
a bigger contribution than the spin, and the angular
term is symmetric in B,. The 2% states flip B.(X) in
signal, which explains such behavior. Also notice that
the trapping energies of the excited states are about
1 order of magnitude larger than those of the ground
state (Fig. 2).
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Figure 3. Trapping energy of the exciton excited states as a
function of the applied magnetic field B, for relative quan-
tum states (a) 2p—, (b) 2s, and (c) 2p*, with spin numbers
m; = 0 (solid), m. = +1 (dashed) and m, = —1 (dotted).

IV Final remarks

The exciton trapping energy in GaAs/Alp3GagrAs
quantum wells in a periodically modulated magnetic
field which we have obtained are not within the ac-
tual energy detection limit of photoluminescence (PL)
experiments. However, our work undoubtedly shows
that the trapping in periodic magnetic structures ex-
ists, and gives further information on its characteristics
that could guide future experiments. We would like to
suggest that to increase E7 one can confine the exciton
in wide gap semiconductors structures. In these sys-
tems, the exciton energy can be higher than 100 times
that of the corresponding GaAs situation. Notice that
an increase of 10 times should make the exciton trap-
ping energy detectable by PL measurements.
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