
310 Brazilian Journal of Physics, vol. 32, no. 2A, June, 2002

Exciton Trapping in a Periodically

Modulated Magnetic Field

J.A.K. Freire1, V.N. Freire1, G.A. Farias1, and F.M. Peeters2

1Departamento de F��sica, Universidade Federal do Cear�a, Centro de Ciências Exatas,

Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Cear�a, Brazil
2Departement Natuurkunde, Universiteit Antwerpen (UIA),

Universiteitsplein 1, B-2610 Antwerp, Belgium

Received on 23 April, 2000

The behavior of excitons in spatially modulated magnetic �elds is described taking into account the
exciton spin contribution. The results show that the exciton trapping in periodic magnetic �elds is
possible and dependent on the modulation pro�le.

I Introduction

In view of recent developments in nanotechnology fab-
rication, the study of charged particles under the in
u-

ence of nonhomogeneous magnetic �elds have been the

subject of a great number of theoretical [1] and exper-

imental [2] investigations. Among these systems, the
magnetotransport through spatially periodic magnetic

�elds has recently yielded very interesting results. Sev-

eral works have been performed on the possibilities of

exciton trapping by using nonhomogeneous stress [3]

and spatially varying electric �elds [4].

Recently, circular magnetic �elds pro�les were used

to induce exciton trapping [5]. In these magnetic sys-

tems, the low-�eld gradient region creates a minimum
in the e�ective con�nement potential for the excitons.

Thus, they can be trapped in the magnetic �eld in-

homogeneity. To the best of our knowledge, the con-

�nement of excitons in periodic magnetic �elds has
not been investigated. The purpose of this work is to

present results on the behavior of excitons in spatially

modulated magnetic �elds.

II The modulated magnetic �eld

structure

One dimensional periodic magnetic pro�les can be cre-

ated, e.g., by the deposition of ferromagnetic �lms or
stripes on top of a semiconductor heterostructure, with

a homogeneous magnetic �eld applied perpendicularly

to the plane of the structure [6]. These �lms are pat-

terned in such a way that the magnetic domains consists
of parallel stripes with magnetization perpendicular or

parallel to the �lm, changing sign from one stripe to the

next, giving rise to a periodically modulated magnetic
�eld in the plane of the semiconductor structure (see

sketch in Fig. 1(a)).

Assuming a magnetization perpendicular to the xy

plane, with boundaries x � (�a=2; a=2), y � (�1;1),

and z � (�h=2; h=2), where a and h is the stripe width
and thickness, respectively, the corresponding equation

for the z component of the magnetic �eld emerging from

one stripe can be written as follows [1, 6]:

Bz(x) = Ba +B�(x; z + h=2)�B�(x; z � h=2); (1)

whereB�(x; z) = (�0M=2�) [arctan (c+)� arctan (c�)],

c� = (x� 0:5a)=z, M is the stripe magnetization, z is

the distance of the center of the stripe to the quantum
well, and Ba the uniform magnetic �eld. The resulting

periodic magnetic �eld is a superposition of those due

to the individual magnetized stripes, in such a way

that:

BTotal
z (x) =

1X
N=�1

(�1)NBz(x�Nl): (2)

where N is the number of stripes and l is a constant

related to the lattice periodicity. The magnetic �eld
pro�le for N = 4 is shown in Fig. 1 (b) (see dashed-

dotted line).

The Hamiltonian describing the exciton motion in a

nonhomogeneous magnetic �eld can be written as [6]:

H = H?(zi)+W (r; ze; zh)+H
2D(R; r)+Hmz(X); (3)

where H?(zi) = �(~2=2m�i )(@
2=@z2i ) + Vi(zi) is the

Hamiltonian describing the electron and heavy-hole
con�nement in the quantum well; W (r; ze; zh) =

(e2=")f
=r � [r2 + (ze � zh)
2]�1=2g is related to the
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di�erence between the 2D and 3D Coulomb interaction

and is treated as a perturbation;

H2D(R; r) = HCM (R) +Hrel(r;R;rR); (4)

with HCM (R) = �(~2=2M)r2
R and Hrel(r;R;rR) =

�(~2=2�)r2
r� (
e2="r)+u1+u2, describes the exciton

motion in the xy plane subjected to the periodic mag-

netic �eld Bz(X), where r and R are the exciton rela-
tive and center-of-mass motion coordinates, r = re�rh
and R = (m�ere +m�hrh) =M , respectively, with the to-

tal exciton mass M = (m�e +m�h); u1 (u2) is related to

the �rst (second) order dependence of the relative co-

ordinates with the nonhomogeneous magnetic �eld [6],
and � = m�em

�

h=M is the exciton reduced mass.

Figure 1. (a) Experimental setup showing the stripe param-
eters: a (h) is the stripe width (thickness), d its distance to
the middle of the quantum well,M the magnetization, Ba is
the applied magnetic �eld, and L is the quantum well width.
(b) E�ective potential and respective magnetic �eld for the
exciton ground state as a function of the X coordinate. In
this �gure, N = 4, a = 0:5 �m, h = 0:2 �m, d = 0:08 �m,
Ba = 0 T, and the iron magnetizationM = 1740 emu/cm3.

Finally, the last term in equation (3), i.e.,

Hmz(X) = �B

�
ge;zSe;z �

1

3
gh;zJh;z

�
Bz(X); (5)

describes the exciton spin interaction with the non-
homogeneous magnetic �eld. In the above equation,
mz = �1;�2 is the exciton quantum spin number
which is related to the electron (Se;z = �1=2) and
heavy-hole (Jh;z = �3=2) spin numbers, and ge;z (gh;z)
is the electron (heavy-hole) g factor.

We used the adiabatic approach because the motion
in the z direction, the exciton relative motion and the

spin motion are fast as compared to the center-of-mass
motion [6]. We also assume that all displacements are
decoupled from each other in such a way that one can
write the total exciton wave function as:

	mz(R; r; ze; zh) = '(R)�(r)F (ze; zh)L
mz (R); (6)

with '(R) = exp(iQY Y ) (X), where QY is the wave
vector of the center-of-mass motion in the Y direction
(exciton free direction).

The eigenvalues of the con�nement in the quantum
well, the exciton relative and spin motion can be ob-
tained by applying the exciton Hamiltonian (Eq. (3))
to the above wave function [6]. For the exciton center-
of-mass motion, we obtain the following Schr�odinger-
like equation:

�
d

dX

~
2

2Meff (X)

d

dX
� V eff (X) +E

�
 (X) = 0; (7)

with

Meff (X)=M =

�
1�

e2�

~2M2c2
�nrmr


4
Bz(X)2

��1
; (8)

V eff (X) =
~
2

2Meff (X)
Q2
Y +

e2�

2�c2
�nrmr


2
Bz(X)2

+
e~

2�c
�Bz(X)mr �

1

2
�Bgexc;zBz(X): (9)

The above equation includes the di�erent eigenval-
ues for the fast motion that contribute as an e�ective
potential and also results in an e�ective mass. Here,
�nrmr

and �nrmr

(in units of a�B
4 and a�B

2, respectively)
are constants related to the relative radial (nr) and an-
gular (mr) quantum numbers [5], � = (m�e

2+m�h
2)=M ,

and gexc = ge;z + gh;z. The e�ective potential as a
function of the X coordinate is shown in Fig. 1(b).

III The exciton trapping energy

In order to estimate the exciton con�nement, we have
de�ned the exciton trapping energy as the di�erence in
energy between an excitonic state in the homogeneous
applied �eld Ba and its corresponding state in the peri-
odic magnetic �eld. As a consequence of this de�nition,
the QY term that is not dependent on the magnetic
�eld ((~2=2M)Q2

Y ) is not included in the calculus of
ET , which greatly decreases the exciton dependence on
the wave vector QY . Indeed, the in
uence of the �rst
term in Eq. (9) on the exciton con�nement is so small
that it will not be further considered. In all our nu-
merical calculations, we have considered a = 0:5 �m,
h = 0:2 �m, d = 0:08 �m, andM = 1740 emu/cm3 [3].

The trapping energy of the exciton ground state as
a function of the applied magnetic �eld Ba is shown
in Fig. 2 for several number of stripes. The energies
related to the magnetic �eld created by one stripe are
completely di�erent from the ones of the situation when
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N 6= 1, but they are very similar when N � 2 for both
spin orientation, i.e., they are independent of the stripe
numbers. The exception is the s = �1 spin state case,
which shows two di�erent behaviors when N is even
and when it is odd.

Figure 2. Trapping energy of the exciton ground state as a
function of the applied �eld Ba for the number of stripes (a)
N = 1, (b) N = 2, (c) N = 11 and (d) N = 20, with spin
mz = 0 (solid), mz = +1 (dashed), and mz = �1 (dotted).

Notice that the exciton is always trapped in the pe-
riodic magnetic potential when N is even, independent
of the spin orientation, which is not true when N is
odd. In this situation, the exciton is not trapped for
s = �1 and Ba > 0.

The angular momentum and spin interaction with
the magnetic �eld give the stronger contribution to the
con�nement potential (see Eq. 11). The trapping en-
ergy for the exciton excited states 2p�, 2s, and 2p+, as
a function of the applied �eld Ba is shown in Fig. 3. No-
tice that the 2s state is an even function of the applied
magnetic �eld, and that the 2p� and 2p+ states are
symmetric in Ba with respect to each other. This can
be explained as follows: the �20 term (see Eq. (9)) gives
a stronger contribution as compared to �10 , but even in
this situation of zero angular momentum, the exciton
spin should dominate the e�ective potential equation.

This does not occur because the exciton g factor for
a 80 �A well width is very small (gexc � �0:3). Also
due to the small g factor, the angular momentum gives
a bigger contribution than the spin, and the angular
term is symmetric in Ba. The 2

� states 
ip Bz(X) in
signal, which explains such behavior. Also notice that
the trapping energies of the excited states are about
1 order of magnitude larger than those of the ground
state (Fig. 2).

Figure 3. Trapping energy of the exciton excited states as a
function of the applied magnetic �eld Ba for relative quan-
tum states (a) 2p�, (b) 2s, and (c) 2p+, with spin numbers
mz = 0 (solid), mz = +1 (dashed) and mz = �1 (dotted).

IV Final remarks

The exciton trapping energy in GaAs/Al0:3Ga0:7As
quantum wells in a periodically modulated magnetic
�eld which we have obtained are not within the ac-
tual energy detection limit of photoluminescence (PL)
experiments. However, our work undoubtedly shows
that the trapping in periodic magnetic structures ex-
ists, and gives further information on its characteristics
that could guide future experiments. We would like to
suggest that to increase ET one can con�ne the exciton
in wide gap semiconductors structures. In these sys-
tems, the exciton energy can be higher than 100 times
that of the corresponding GaAs situation. Notice that
an increase of 10 times should make the exciton trap-
ping energy detectable by PL measurements.
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