
    

    

Statistical method for thickness measurement of amorphous objects
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The authors propose a nondestructive method for the determination of the thickness of an
amorphous sample. This method is based on the statistics of the phase of the electron exit wave
function, which depend on the number of atoms traversed by the incident electron which itself is a
function of the thickness of the object. The accuracy of this method has been checked numerically
by the multislice method and compared with that based on the mean inner potential. © 2007
American Institute of Physics. �DOI: 10.1063/1.2749184�

In many applications of amorphous thin objects an accu-
rate knowledge of the thicknesses is needed because a num-
ber of physical and technological properties of thin objects
strongly depend on the confinement governed by the object
thickness. The control of amorphous film thickness is a nec-
essary condition for continued device miniaturization and is
indispensable for application of physical phenomena emerg-
ing in thin films. For instance, in nanoelectronics the present
limit of the reduction in the size of components is the thick-
ness of the amorphous dielectric layers, so the determination
of this thickness is an important metrological challenge. In
materials science in situ object thickness monitoring is often
essential for characterizing the experiments. In the bright
field imaging mode of the transmission electron microscope
the images sensitively depend, besides other factors, on
specimen thickness, which makes the accurate object thick-
ness determination essential for the correct interpretation of
the experimental results.

Thickness measuring techniques can be classified as de-
structive and nondestructive. The most used destructive
methods employ cross section in a scanning electron micro-
scope, cross section in a transmission electron microscope,1

electron impact emission spectroscopy,2 reflection high-
energy electron diffraction,3 sputter depth profiling, and
x-ray photoelectron spectroscopy,4 while among nondestruc-
tive techniques we mention x-ray diffraction,5 x-ray fluores-
cence spectroscopy,5,6 spectroscopic ellipsometry,7 Ruther-
ford backscattering, nuclear reaction analysis, and energy
dispersive spectroscopy.8,9 A simple method of mass thick-
ness determination for amorphous and polycrystalline films
based on the Rutherford approximation is proposed in
Ref. 10. However, there is a strong necessity to develop a
thickness measurement technique, which will be fast, cheap,
and nondestructive, and can be applied to amorphous films
with of light elements.

The basic idea behind our approach is as follows. Since
the phase shift through an individual atom can be calculated,
the distribution of the phase shifts at the exit face of the
amorphous object can be expressed in statistical terms as a
function of the number of atoms that are crossed, which itself
is a function of the object thickness. If we assume that the
object consists of atoms of the same type, with empty space
in between, we can calculate the statistics of the phase of the
exit wave from which we can determine the average number

of atoms crossed by the electron beam and hence also the
specimen thickness in the direction of the electron propaga-
tion. The phase of the exit wave function can be determined
accurately using off axis holography with a Cs corrected
microscope.11 We assume that �i� the ray paths are straight
and perpendicular to the foil, �ii� inside the atom, the phase is
determined by the electrostatic potential projected along the
beam, �iii� in between the atoms, the potential is constant V0
�which might be zero�, and �iv� the thickness is constant over
the area of measurement.

The phase shift through the atom depends on the posi-
tion of the beam R and is given by

��R� = �� V�R,z�dz , �1�

where �=��� ,E0� is the interaction parameter.12 Here � is
the electron wavelength in vacuum and E0 is the kinetic en-
ergy of the electron in vacuum. We limit the size of the atom
to R�R0 �to avoid divergences later�.

Let us consider a section of the object with area S and
thickness t. If we introduce � the mass density of material, m
the mass of an individual atom, and n the number of atoms in
the section, then the number of atoms per unit area as seen
by the incident electron is

D =
n

S
=

�

m
t . �2�

Let us now consider one particular ray path i, as seen along
the beam direction. On propagating through the object, the
path crosses different atoms. The number N of atoms that are
crossed can be estimated as follows. If we call R0 the radius
of each atom, then the ray i crosses all atoms whose origins
are within a circle with radius R0 around i. Thus N=D�R0

2.
Every atom crossed by i adds a contribution to the phase,
given by Eq. �1�.

We can now reconsider the situation from another per-
spective. Since all atoms are identical �can be generalized�,
the phase of the ray path can be considered as the sum of
phase contributions sampled at N values ��Rj� at N different
positions j=1, . . ,N of the same atom. According to the cen-
tral limit theorem the total phase at the exit face of the
sample is thena�Electronic mail: mihail.croitoru@ua.ac.be

APPLIED PHYSICS LETTERS 90, 1 �2007�

AQ:
#1

56

57
58
59
60
61
62
63
64
65
66
67

68

69

70
71
72
73
74
75
76
77

78

79
80
81
82
83
84
85
86
87
� 24�/1/0/$23.00 © 2007 American Institute of Physics90, 1-1

   

http://dx.doi.org/10.1063/1.2749184
http://dx.doi.org/10.1063/1.2749184


   

  P  

�T = �
j=1

N

��Rj� = N��� =
�

m
t�R0

2��� , �3�

with ���=� j=1
N ��Rj� /N.

Let us now calculate the standard deviation in �T. If we
assume the samples Rj to be uncorrelated, we have, accord-
ing to the central limit theorem, �T

2 =N�2, where � is the
standard deviation of each sample ��Rj�. Therefore,

�T =	 �

m
t�R0

2� . �4�

Since ��R� only depends on the distance R from the origin of
the atom we can also write ��� as

��� = �
0

R0

��R�p�R�dR , �5�

with p�R� the probability to find a distance between R and
R+dR, which is proportional to the area p�R�dR
=2�RdR /�R0

2. Taking into account the finite radial size of
an atomic potential we get

lim
R0→�

���R0
2 = 2�

0

�

��R�RdR = C1, �6�

lim
R0→�

�2R0
2 = 2�

0

�

�2�R�RdR = C2. �7�

Using Eqs. �3� and �4� we obtain analytical expression
for the mean phase of the exit wave function in the form

�T =
��C1

m
t �8�

and for the standard deviation of the phase of the exit wave
function in the form

�T =	��C2

m
t1/2. �9�

The parameters C1 and C2 can be easily calculated from the
tabulated values of the scattering amplitudes. In this work we
have chosen Kirkland’s fitting form for the scattering
amplitudes12 that has the appropriate form at large and small
scattering angles

f�q� = �
i=1

NL ai

q2 + bi
+ �

i=1

NG

cie
−diq

2
, �10�

where NL=3 is the number of Lorenzians and NG=3 is the
number of Gaussians. Since the atomic potential V�R ,z� is a
three-dimensional Fourier transform of the scattering ampli-
tudes in Born approximation, together with Eq. �1� this leads
to

�T = 	�
��

m

�

i=1

NL ai

bi
+ �

i=1

NG

ci�t , �11�

where 	=2a0e �a0=
2 /mee
2 is the Bohr radius, me is the rest

mass of the electron, and e is the charge of the electron�. The
standard deviation of the phase of the exit wave function is
given by

�T = �	�
��

m
�1/2��

i,j=1

NL aiaj

bi − bj
ln
 bi

bj
��1 − �i,j� +

ai
2

bi
�i,j

+ �
i,j=1

NG cicj

di + dj

+ 2�
i=1

NL

�
j=1

NG

aicj exp�bidj��0�bidj�
1/2

t1/2, �12�

where �a�x� is the incomplete gamma function.13 Our calcu-
lations give for the coefficients C1 and C2 from Eqs. �6� and
�7� the following result �E0 /e=300 kV�: C1,Si=0.058 08 Å2,
C1,C=0.024 99 Å2, 	C2,Si=0.068 90 Å, and 	C2,C
=0.035 90 Å.

For the numerical simulation a Si sample based on a
simple Si model due to Wooten et al. with 4096 atoms in the
unit cell has been used.14 The artificial lattice parameter used
in the simulation is a1=45.2402 Å. The mass density is
2.323 g/cm3. The sampling in the real space has been per-
formed on the two-dimensional arrays with dimensions of
1024
1024 and 2048
2048. Following Ref. 12 these grid
parameters give the adequate sampling for our calculations
with real space sampling resolution in the worst case equal to
�x�0.11 Å/pixel, the worst resolution in reciprocal space is
�q�0.01 Å−1, and the angular resolution is equal to
��=��q�0.2 mrad.12 The accelerating voltage V is
300 kV.

In order to simulate the wave function at the exit face of
the specimen we have used the multislice method,12,15,16

FIG. 1. �Color online� Standard devia-
tion and mean exit wave phase as a
function of square root of the amor-
phous Si-sample thickness and amor-
phous Si-sample thickness, respec-
tively, due to Wooten et al. with 4096
atoms in the unit cell. In both panels
the solid line demonstrates the results
of our theoretical model. In the right
panel dashed-dotted lines exhibit re-
sults obtained from the experiment
and the Hartree-Fock calculations of
MIP.
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which is simpler applicable to amorphous structures as com-
pared with the Bloch wave method, especially for the large
artificial unit cells used in the calculation. The plan view
transmission electron microscopy setup has been used to
simulate the real experiment.

Figure 1 shows the standard deviation of the phase of the
exit wave function as a function of the square root of the
amorphous Si-sample thickness and the mean value of the
exit wave phase as a function of thickness. The numerical
simulations have been done with two samples with
2a1
2a1 �dotted line� and 4a1
4a1 transversal sizes
�dashed line�. Whereas the analytical form of �T is propor-
tional to t1/2, the thickness dependence of the standard devia-
tion of the exit wave phase obtained from simulations
slightly deviates from this simple law. One can see that the
statistical model based on the exit wave phase standard de-
viation developed in this letter predicts the correct thickness
of an amorphous Si sample in the vicinity of t=25 nm with
an error of 20%–25%. The main reason for this is that the
developed model does not take into account the quantum
mechanical effects in the imaging electron propagation
through the specimen. However, these effects can be signifi-
cant only in the thickness determination model based on the
phase standard deviation. The right side of Fig. 1 shows a
very small discrepancy in the mean value of the exit wave
phase between the numerical simulation and theoretical pre-
diction. In the right side of Fig. 1 the dashed-dotted lines
show the results obtained from the experiment �electron ho-
lography� and the Hartree-Fock calculations of the mean in-
ner potential �MIP� of the crystalline Si.17,18

In order to test the model developed in this letter on
another material we have simulated also an experiment with
amorphous carbon. The simulated amorphous carbon sample
has been obtained from a diamond crystal sample by ran-
domization. Each carbon atom in diamond is surrounded by
four nearest neighbors. The lattice parameter used in the
simulation is a0=3.5670 Å. The cell volume is
45.385
10−24 cm3. The mass density is 3.5155 g/cm3. The
result of the simulation is shown in Fig. 2 �dashed line�. In
this figure the results of the theoretical model are presented
as well �solid line�: �T=0.1385t. The result of theoretical
model for the mean exit phase shift almost overlaps with that

of the multislice simulation. Since the mean inner Coulomb
potential for amorphous carbon is available in the
literature,19 we can compare the predictions of our theory
with that based on the carbon mean inner potential. Using the
fitting formula given in Eq. �5� of Ref. 19, we obtain the
mean inner potential for the amorphous carbon
�V�=19.04 eV. The result is presented in the right-hand
panel of Fig. 2 as a dashed-dotted line.

In conclusion, in this work we have demonstrated a prac-
tical method for the determination of the thickness of amor-
phous samples using statistical data of the phase of the exit
wave function.

One of the authors �M.D.C� was grateful to the Fund for
Scientific Research-Flanders.
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FIG. 2. �Color online� Standard devia-
tion of the exit wave phase and mean
phase shift as a function of amorphous
carbon sample thickness.
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