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The band structure of two-dimensional artificial superlattices in the presence of �Rashba-type� spin-orbit
interaction �SOI� is presented. The position and shape of the energy bands in these spintronic crystals depend
on the geometry as well as the strength of the SOI, which can be tuned by external gate voltages. For finite
mesoscopic arrays, we show that their conductance properties and possible applications can be understood
from these spin-dependent band diagrams.
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I. INTRODUCTION

Infinite periodic structures—although in the strict sense
they do not exist—provide several fundamental concepts that
determine the physical properties of various systems. For
example, the notion of bands is essential in the theory of
solids. The concept of “crystals” has also been used, e.g., in
the context of photonic bandgap materials.1,2 In that case
artificial periodic structures have been fabricated with a pho-
tonic band structure. Here we show how both the energy and
spin of electrons can be engineered leading to the concept of
spintronic crystals. The band structure of these crystals is
flexible in the sense that instead of being completely deter-
mined by the geometry, it is tunable by gate voltages.

We consider two-dimensional �2D� superlattices, which
can be fabricated from, e.g., InAlAs/InGaAs based
heterostructures3 or HgTe/HgCdTe quantum wells,4 where
Rashba-type5 spin-orbit interaction �SOI� is present. This ef-
fect, which is essentially the same as the one which causes
the fine structure in atomic spectra, results in spin-dependent
transport phenomena. Experiments have demonstrated that
the strength of this type of SOI can be controlled by external
gate voltages.6,7 Small periodic structures such as 5�5 ring
arrays have recently been realized experimentally8 and have
been described theoretically9,10 as well. A general form of the
Bloch amplitudes in a two-dimensional electron gas with
Rashba-type SOI and a periodic potential has been found in
Ref. 11 and a spin-orbit interaction based quantum ratchet
producing spin currents even in the presence of strong dissi-
pation has also been proposed.12,13 Finite chains of quantum
rings,14 ladder,15 and diamondlike elements16,17 have also
been investigated, as well as artificial crystallike
structures18,19 in contexts different from the current one. The
spin-transformation properties of finite networks suggest
various possible spintronic20 applications as well.16,21,22

Conductance calculations show—already in relatively
small finite lattices—signatures of a possible underlying
band structure, as one can identify SOI-dependent energy
regions where the system is completely opaque for the elec-
trons. In the present paper we show that these “nonconduct-
ing stripes”10 are directly related to the relevant band gaps.
The general 2D lattice that we will consider is shown in Fig.
1. We found that the details of the band structure strongly
depends on the geometry of the unit cell but the overall

scaling properties, as well as the remarkable SOI dependence
are general.

The characteristic energies in our problem are much
smaller than, e.g., the usual electronic band gaps in semicon-
ductors. This is essentially due to the differences in the lat-
tice constants, typical “bond lengths” have to be compared to
spatial periodicity of the artificial superlattices, having the
order of 10 nm. Thus the nanometer-scale translational sym-
metry induced subbands that we describe in the current paper
can be considered as a fine structure of the usual electronic
bands, which becomes important at low temperatures.

II. CALCULATION OF THE SPIN-DEPENDENT
BAND STRUCTURES

The Hamiltonian of a narrow quantum wire in the x-y
plane with Rashba-type SOI can generally be written as

H = ����− i
�

�s
+

�

2�
n�� � ez��2

−
�2

4�2� , �1�

where the unit vector n points to the chosen positive direc-
tion along the wire and we introduced the characteristic ki-
netic energy ��=�2 /2m�a2 �with a being one of the lattice
constants, see Fig. 1�. The strength of the SOI is given by
�=� /a, where the Rashba parameter � �Ref. 23� is tunable
by gate voltages, and s denotes the �dimensionless� length
variable along the wire measured in units of a.

Independently from the direction of the wire, the energy
levels of H form a continuum, and the spin direction of the
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FIG. 1. �a� Two-dimensional parallelogram lattice and �b� a fi-
nite array, where the relevant parameters �that may lead to square or
rectangular lattices as well� and some possible input and output
leads are shown. Electrons move along the lines connecting the
junctions �full circles�.
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eigenspinors depend on the SOI strength. A given energy
eigenvalue is fourfold degenerate due to the two possible
propagation and spin directions. The structure shown in Fig.
1 corresponds to two Hamiltonians with an angle of � be-
tween the corresponding n vectors. In order to find an eigen-
state for the whole geometry, the solutions have to be con-
tinuous at the junctions, and we also require the net spin
current density to be zero at these points.24

In the case of an infinite periodic structure, we look for
Bloch-wave solutions �exp�ik ·r�	�r� with lattice-periodic
spinors 	�, which means an additional, special boundary
condition. The consequence is an energy spectrum with a
specific structure: e.g., there will be no solutions in certain
energy ranges. Determination of the band structure means
finding triplets 	E�k� ,k1 ,k2
 that correspond to a Bloch-wave
eigenspinor of the problem. As usually, we find that E�k� is a
multivalued function of the two-dimensional wave vector k,
and we can identify infinitely many surfaces in this function.
These surfaces �bands� do not overlap unless in the presence
of a symmetry induced degeneracy.

Note that the model above assumes single mode propaga-
tion, which is a reasonable approximation for narrow con-
ducting wires. Taking the finite width of these channels into
account leads to qualitatively the same results, with consid-
erably increased computational costs. Additionally, subbands
related to the transversal modes have already been analyzed
in detail �see, e.g., Ref. 25�, thus using the current model we
can focus on the band structure induced by the periodicity of
the lattice.

III. BAND SCHEME AND CONDUCTANCE PROPERTIES

For a given two-dimensional wave vector k the energy
eigenvalues can be written as En,m�k�, where the band indi-
ces n and m are related to the spatial periodicity of the
exp�k ·r� waves in the unit cell along the two lattice direc-
tions. These energies scale essentially with the square of n /a
and m /b. The same phase relations at the boundaries can
hold with, e.g., n and n+1 waves along the direction of one
of the lattice vectors in the unit cell, and the dominant con-
tribution �omitting SOI corrections� of these solutions to the
energy is proportional to n2 /a2 and �n+1�2 /a2. That is, the
bands have in general a double quasiperiodic structure. How-
ever, when a�b, a repetition of a small number of En,m�k�
surfaces provides the complete band structure.

Figure 2�a� shows four bands for a rectangular lattice with
b /a=1.03 and zero SOI. �Note that energy is measured in
units of ��, which, for a=10 nm in InAlAs/InGaAs based
heterostructures is on the order of millielectron-volt.� The
four bands seen in this figure are quasiperiodically repeated.
The lattices shown in Fig. 1 have unit cells with four distinct
boundary points, that is, four leads connect them to the
neighboring cells. The oppositely situated boundary points
are equivalent in a crystal, thus any measurable physical
quantity has to have the same value at these points. Particu-
larly, the currents carried by the opposite leads should be the
same. That is, the sign of the currents at the four leads can be
written schematically as ++++, +−+−, −+−+, and −−−−
�where the leads that correspond to the 
 signs follow each

other in a clockwise order.� The four bands seen in Fig. 2�a�
correspond to these four possible current configurations. For
nonzero SOI, all these bands split into two due to the spin
dependence of the interaction and as it is shown in Fig. 2, the
strength of the SOI modifies considerably both the position
and the width of the allowed/forbidden bands.

In Fig. 2�c� cross sections of the band structure are plotted
for different values of the SOI which clearly shows the
gradual splitting of the levels as the SOI gets stronger. Ad-
ditionally, when we identify the bands that continuously
evolve from/into each other when the strength of the SOI
�characterized by the parameter � in Eq. �1�� is changed, we
notice an overall decrease in the energies �see the dotted
lines in Fig. 2�c��. This is due to the SOI induced splitting of
the lowest band, resulting in a decrease in the lowest possible
energy when � increases.

The band structure strongly depends on the underlying
geometry as illustrated in Fig. 3. This emphasizes that be-
sides the tunability of the band structure by external gate
voltages �that modify the strength of the SOI�, geometry is
also an important additional degree of freedom.

Results based on infinite structures usually have implica-
tions also on large but finite systems. Now we calculate the
conductance of arrays consisting of N�N unit cells �see Fig.
1�b�� using the Landauer-Büttiker25 formula

a) b)

c)

FIG. 2. �Color online� Band structure of a lattice with �=� /2
and b /a=1.03, with strength of the SOI �a� zero and �b� � /�
=5.0. Cross sections at k2b=1.0 are shown for several additional
values of the SOI strengths in panel �c�. The thin dotted lines guide
the eyes by showing the energy range for which the bands are
“essentially the same,” i.e., they continuously transform into each
other when the SOI strength is changed. Note that the levels be-
tween the dotted lines correspond to the two dimensional plots in
panels �a� and �b�.
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where the sum runs over the possible outputs. T↑
n�E� �T↓

n�E��
refers to the transmission probability at the relevant output
for spin-up �spin-down� input in the chosen quantization di-
rection. These probabilities are calculated by solving the ei-
genvalue problem for the whole network at a given energy E
imposing the appropriate boundary conditions, e.g., at the
input we have a spin-up �or spin down� incoming wave and
a possible reflected one while at the outputs only outgoing
waves appear.

Figure 4�a� shows a contour plot of the conductance as a
function of the energy and the SOI strength for a rectangular
15�15 array. We clearly notice the appearance of stripes
�the position and width of which depend on the SOI strength�
of zero conductance. In these regions the array is completely
opaque for the electrons. Additionally, for the 15
�15 array, these nonconducting stripes10 coincide with the
band gaps obtained from a calculation assuming an infinite
structure with the same local geometry. In order to visualize
this fact, we projected the band structure on the energy axis
to obtain the limits between allowed and forbidden energy
regions �see the gray areas in Fig. 4�b��. Already for a 3
�3 network, we can see some signatures in G�E� of the band
structure but for a 7�7 array the positions of the zero-
conductance energy ranges are practically the same as the
band gaps. Having introduced random, spin-dependent scat-
tering centers as it is discussed in Refs. 10 and 26, we ob-
served that the widths of the band gaps decrease only 10%,
even when dephasing is so strong, that 100% degree of spin-
polarization �input� drops to 20% �outputs�.

IV. POSSIBLE APPLICATIONS

Energy filtering is obviously the most straightforward ap-
plication of the results presented so far. For example, when
a�b there are very narrow bands the width and position of
which can be controlled by the SOI strength. For InAlAs/
InGaAs based heterostructures and a 9�9 network with �
=� /2, a=50 nm, and b /a=1.01, an energy range around 2

meV is transmitted in the middle of a 20 meV wide band
gap.

Conductance of finite arrays at nonzero temperatures has
also been calculated using the appropriate Landauer-Büttiker
formula.25 The most interesting effect in this context is re-
lated to the positions of the almond-shaped minima in Fig.
4�a�: as we can see, the width of all the band gaps can be
controlled simultaneously by the SOI strength. Therefore
even when the input has a broad energy distribution �high
temperature limit�, conductance is still modulated by the
SOI. For the same device mentioned above, the conductance
changes 20% of its average value when the SOI strength is
varied in experimentally achievable range. For a 13�13
square network the modulation is around 40%. �Note that in
the framework of our model, at “high temperatures” trans-
versal modes other than the ground state in this direction
should not be excited. However, the physical reasons of the
result above are valid also for multimode propagation.�

For nonsquare lattices the geometrical anisotropy leads to
anisotropy in the band structure �see Fig. 3�, and conse-
quently also in the conductance properties. For a 9�9 lattice
with b /a=2, �=� /4, the difference of the transmission
probabilities in the x and y directions—depending on the SOI
strength—can be zero, or as large as 
0.8, so that the higher
one is above 0.95.

FIG. 3. The effect of the lattice geometry on the band structure
for � /�=1.0, k1a=1.0.
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FIG. 4. �Color online� Top: contour plot of the conductance
measured in units of G0=e2 /h for a 15�15 array with b /a
=2, �=� /2 as a function of the energy and the SOI strength. Panel
�b� shows the conductance of 3�3, 7�7, 15�15 arrays where the
light gray shading indicates the energy gaps in the corresponding
infinite superlattice.
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Besides the SOI controlled phenomena discussed above,
finite arrays can also perform various spin transformations.
Apart from spin rotations that can also be done with smaller
devices, the arrays considered here are also versatile spin-
tronic devices: e.g., according to our calculations, the net-
work described in the previous paragraph can deliver oppo-
sitely spinpolarized outputs from a completely unpolarized
input, when the output leads are situated at the middle of the
sides of the network �see Fig. 1�b��. Additionally, the spin-
polarizing property can be combined with energy filtering,
for the 9�9 network we discussed earlier ��=� /2,b /a
=1.01� the degree of polarization at the output can be above
85%. Note that some of these spintronic properties are simi-
lar to that of ring arrays21 and although in the current case
the transmission probabilities are lower than unity �but still
around 50%�, now there is no need for a local modulation of
the SOI strength, which is promising from the viewpoint of
possible applications.

V. SUMMARY AND CONCLUSIONS

In summary, we investigated two-dimensional superlat-
tices in which the propagation of the electrons is determined

by the interplay of the geometry and the SOI. We calculated
the band structure of these artificial crystals, and showed that
by changing the SOI strength in the experimentally achiev-
able range, the band scheme can be modified qualitatively,
e.g., forbidden energy ranges can become allowed and vice
versa. Comparing the band structure with the conductance
properties of finite systems, we found that already for rela-
tively small arrays, forbidden bands are clearly seen in the
conductance. Several possible applications were given, in-
cluding strong modulation of the conductance at moderate
temperatures, and a device that can deliver partially spinpo-
larized electrons with narrow energy distribution.
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