|
Record |
Links |
|
Author |
Patiño, Y.; Pilehvar, S.; Díaz, E.; Ordóñez, S.; De Wael, K. |
|
|
Title |
Electrochemical reduction of nalidixic acid at glassy carbon electrodemodified with multi-walled carbon nanotubes |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Journal of hazardous materials |
Abbreviated Journal |
J Hazard Mater |
|
|
Volume |
323 |
Issue |
B |
Pages |
621-631 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT −MWCNT-COOH and MWCNT-NH2was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT > MWCNT-NH2 > MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH = 5.0, deposition time = 20 s and volume of MWCNT = 10 μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A = 8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LCMS). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000390513700004 |
Publication Date |
2016-10-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3894 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.065 |
Times cited |
4 |
Open Access |
|
|
|
Notes |
; This work was supported by the Spanish Government (contract CTQ2011-29272-C04-02) and by the Government of the Principality of Asturias (contract FC-15-GRUPIN14-078). Y. Patifio thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program). S.P. and K.D.W. are thankful to UA for DOCPRO financial support. ; |
Approved |
Most recent IF: 6.065 |
|
|
Call Number |
UA @ admin @ c:irua:136108 |
Serial |
5594 |
|
Permanent link to this record |