toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C. url  doi
openurl 
  Title (up) Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 19 Pages 8103-8110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709549100026 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:184137 Serial 6857  
Permanent link to this record
 

 
Author Chang, K.; Peeters, F.M. url  doi
openurl 
  Title (up) Bright to dark exciton transition in symmetric coupled quantum wells Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue 15 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy dispersion of an exciton in a coupled quantum well is modified by an external in-plane magnetic field. We find that the in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center-of-mass (CM) momentum to a finite CM momentum, and render the ground state of the magnetoexciton stable against radiative recombination due to momentum conservation. At the same time, a spatial separation of the electron and hole is realized. Thus an in-plane magnetic field can be used to tailor the radiative properties of excitons in coupled quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000168215400013 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37292 Serial 256  
Permanent link to this record
 

 
Author Chwiej, T.; Bednarek, S.; Adamowski, J.; Peeters, F.M. url  doi
openurl 
  Title (up) Broken one-particle symmetry in few-electron coupled quantum dots Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 7 Pages 075422,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235668900113 Publication Date 2006-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:57003 Serial 257  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 066204,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230275000049 Publication Date 2005-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62446 Serial 258  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Buckled circular monolayer graphene : a graphene nano-bowl Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 4 Pages 045002-045002,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (~0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286142800003 Publication Date 2010-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:88043 Serial 259  
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M. url  doi
openurl 
  Title (up) C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 19 Pages 12485-12499  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional polyaniline with structural unit C3N is an indirect semiconductor with 0.4 eV band gap, which has attracted a lot of interest because of its unusual electronic, optoelectronic, thermal, and mechanical properties useful for various applications. Adsorption of adatoms is an effective method to improve and tune the properties of C3N. Using first-principles calculations, we investigated the adsorption of adatoms, including H, O, S, F, Cl, B, C, Si, N, P, Al, Li, Na, K, Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, on C3N. Depending on the adatom size and the number of valence electrons, they may induce metallic, half-metallic, semiconducting, and ferromagnetic-metallic behavior. In addition, we investigate the effects of an electrical field, charging, and strain on C3N and found how the electronic and magnetic properties are modified. Semi- and full hydrogenation are studied. From the mechanical and thermal stability of C3N monolayer, we found it to be a hard material that can withstand large strain. From our calculations, we gained novel insights into the properties of C3N demonstrating its unique electronic and magnetic properties that can be useful for semiconducting, nanosensor, and catalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468368800053 Publication Date 2019-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 67 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FW0-V1). The authors thank Keyvan Nazifi from the Cluster Center of Faculty of Science, Guilan University, for his help. They acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:160323 Serial 5196  
Permanent link to this record
 

 
Author Rivera Julio, J. url  openurl
  Title (up) Cálculos ab initio de sistemas 2D y de baja dimensionalidad Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176996 Serial 6718  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 6 Pages 064501,1-064501,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998100091 Publication Date 2010-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81766 Serial 271  
Permanent link to this record
 

 
Author Verhulst, A.S.; Verreck, D.; Pourghaderi, M.A.; Van de Put, M.; Sorée, B.; Groeseneken, G.; Collaert, N.; Thean, A.V.-Y. url  doi
openurl 
  Title (up) Can p-channel tunnel field-effect transistors perform as good as n-channel? Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 4 Pages 043103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that bulk semiconductor materials do not allow perfectly complementary p- and n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the most promising TFET materials, phonon-assisted tunneling to this subband degrades the subthreshold swing and leads to at least 10x smaller on-current than the desired ballistic on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling orthogonal to the gate, made out of InP, In0.53Ga0.47As, InAs, and a modified version of In0.53Ga0.47As with an artificially increased conduction-band density-of-states. We further show that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a tensily strained line-tunneling configuration. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000341152600067 Publication Date 2014-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by imec's industrial application program. D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT). ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:134433 Serial 4587  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title (up) Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T. pdf  openurl
  Title (up) Carbon nanotubes and graphene based devices : from nanosensors to confined water Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:154838 Serial 5081  
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T. pdf  openurl
  Title (up) Carbon nanotubes and graphene based devices : from nanosensors to confined water Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 161 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:154838 Serial 5197  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 285-290  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000401120800033 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 36 Open Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ lucian @ c:irua:143726 Serial 4588  
Permanent link to this record
 

 
Author Hawrylak, P.; Peeters, F.; Ensslin, K. pdf  doi
openurl 
  Title (up) Carbononics : integrating electronics, photonics and spintronics with graphene quantum dots Preface Type Editorial
  Year 2016 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 10 Issue 10 Pages 11-12  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wiley-v c h verlag gmbh Place of Publication Weinheim Editor  
  Language Wos 000368814500002 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.032  
  Call Number UA @ lucian @ c:irua:131600 Serial 4146  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title (up) Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal  
  Volume Issue Pages 92-96  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516619300024 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:181281 Serial 7579  
Permanent link to this record
 

 
Author Brosens, F.; Magnus, W. doi  openurl
  Title (up) Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions Type A1 Journal article
  Year 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 7 Pages 1656-1661  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract In principle, transport of charged carriers in nanometer sized solid-state devices can be fully characterized once the non-equilibrium distribution function describing the carrier ensemble is known. In this light, we have revisited the Boltzmann and the Wigner distribution functions and the framework in which they emerge from the classical respectively quantum mechanical Liouville equation. We have assessed the method of the characteristic curves as a potential workhorse to solve the time dependent Boltzmann equation for carriers propagating through spatially non-uniform systems, such as nanodevices. In order to validate the proposed solution strategy, we numerically solve the Boltzmann equation for a one-dimensional conductor mimicking the basic features of a biased low-dimensional transistor operating in the on-state. Finally, we propose a computational scheme capable of extending the benefits of the above mentioned solution strategy when it comes to solve the Wigner-Liouville equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000268659100033 Publication Date 2009-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:77953 Serial 284  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title (up) Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 2 Pages 025011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the non-equilibrium Green's function formalism, we study carrier transport through imperfect two-dimensional (2D) topological insulator (TI) ribbons. In particular, we investigate the effect of vacancy defects on the carrier transport in 2D TI ribbons with hexagonal lattice structure. To account for the random distribution of the vacancy defects, we present a statistical study of varying defect densities by stochastically sampling different defect configurations. We demonstrate that the topological edge states of TI ribbons are fairly robust against a high concentration (up to 2%) of defects. At very high defect densities, we observe an increased inter-edge interaction, mediated by the localisation of the edge states within the bulk region. This effect causes significant back-scattering of the, otherwise protected, edge-states at very high defect concentrations (>2%), resulting in a loss of conduction through the TI ribbon. We discuss how this coherent vacancy scattering can be used to our advantage for the development of TI-based transistors. We find that there is an optimal concentration of vacancies yielding an ON-OFF current ratio of up to two orders of magnitude. Finally, we investigate the importance of spin-orbit coupling on the robustness of the edge states in the TI ribbon and show that increased spin-orbit coupling could further increase the ON-OFF ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856400002 Publication Date 2019-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 3 Open Access  
  Notes ; This material is based in part upon work supported by the National Science Foundation under Grant Number 1710066. The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:157464 Serial 5198  
Permanent link to this record
 

 
Author Peeters, F.M.; Wu, X.; Devreese, J.T.; Langerak, C.J.G.M.; Singleton, J.; Barnes, D.J.; Nicholas, R.J. doi  openurl
  Title (up) Carrier-concentration-dependent polaron cyclotron resonance in GaAs-heterostructures Type A1 Journal article
  Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B  
  Volume 45 Issue Pages 4296-4300  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HF82800041 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 46 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:2890 Serial 283  
Permanent link to this record
 

 
Author Maistrenko, Y.L.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V.L. doi  openurl
  Title (up) Cascades of multiheaded chimera states for coupled phase oscillators Type A1 Journal article
  Year 2014 Publication International journal of bifurcation and chaos in applied sciences and engineering Abbreviated Journal Int J Bifurcat Chaos  
  Volume 24 Issue 8 Pages 1440014  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an “eight-like” limit cycle resulting eventually in a chimera state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000341494900015 Publication Date 2014-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-1274;1793-6551; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.329 Times cited Open Access  
  Notes Approved Most recent IF: 1.329; 2014 IF: 1.078  
  Call Number UA @ lucian @ c:irua:119303 Serial 285  
Permanent link to this record
 

 
Author Celebi, S.; Sezgin, M.E.; Çakir, D.; Baytan, B.; Demirkaya, M.; Sevinir, B.; Bozdemir, S.E.; Gunes, A.M.; Hacimustafaoglu, M. doi  openurl
  Title (up) Catheter-associated bloodstream infections in pediatric hematology-oncology patients Type A1 Journal article
  Year 2013 Publication Pediatric Hematology And Oncology Abbreviated Journal Pediatr Hemat Oncol  
  Volume 30 Issue 3 Pages 187-194  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Catheter-associated bloodstream infections (CABSIs) are common complications encountered with cancer treatment. The aims of this study were to analyze the factors associated with recurrent infection and catheter removal in pediatric hematology-oncology patients. All cases of CABSIs in patients attending the Department of Pediatric Hematology-Oncology between January 2008 and December 2010 were reviewed. A total of 44 episodes of CABSIs, including multiple episodes involving the same catheter, were identified in 31 children with cancer. The overall CABSIs rate was 7.4 infections per 1000 central venous catheter (CVC) days. The most frequent organism isolated was coagulase-negative Staphylococcus (CONS). The CVC was removed in nine (20.4%) episodes. We found that hypotension, persistent bacteremia, Candida infection, exit-side infection, neutropenia, and prolonged duration of neutropenia were the factors for catheter removal. There were 23 (52.2%) episodes of recurrence or reinfection. Mortality rate was found to be 9.6% in children with CABSIs. In this study, we found that CABSIs rate was 7.4 infections per 1000 catheter-days. CABSIs rates in our hematology-oncology patients are comparable to prior reports. Because CONS is the most common isolated microorganism in CABSIs, vancomycin can be considered part of the initial empirical regimen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 2013-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-0018 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.12 Times cited Open Access  
  Notes Approved Most recent IF: 1.12; 2013 IF: 0.963  
  Call Number UA @ lucian @ c:irua:128324 Serial 4589  
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title (up) Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 107 Issue 3 Pages 034501-34510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955986000006 Publication Date 2023-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366  
  Call Number UA @ admin @ c:irua:196089 Serial 7586  
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title (up) Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 22 Pages 4043-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000887683200001 Publication Date 2022-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:192731 Serial 7286  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M. doi  openurl
  Title (up) Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 222101-222104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600034 Publication Date 2013-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 25 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109607 Serial 305  
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title (up) Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 064112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359859400003 Publication Date 2015-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127753 Serial 4148  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Verhulst, S.L.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Verdonck, P.R.; van Doorn, J.W.D.; Nadjmi, N.; de Backer, W.A. doi  openurl
  Title (up) Change in upper airway geometry between upright and supine position during tidal nasal breathing Type A1 Journal article
  Year 2014 Publication Journal Of Aerosol Medicine And Pulmonary Drug Delivery Abbreviated Journal J Aerosol Med Pulm D  
  Volume 27 Issue 1 Pages 51-57  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000331144500007 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-2711;1941-2703; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.528 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 2.528; 2014 IF: 2.798  
  Call Number UA @ lucian @ c:irua:115759 Serial 308  
Permanent link to this record
 

 
Author Komendová, L. openurl 
  Title (up) Characteristic length scales and vortex interactions in two-component superconducting systems Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:112085 Serial 312  
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Yu, G.; Gupta, J.A.; Aers, G.C.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S. doi  openurl
  Title (up) Characterization and modeling of single-particle energy levels and resonant currents in a coherent quantum dot mixer Type P1 Proceeding
  Year 2011 Publication AIP conference proceedings T2 – 30th International Conference on the Physics of Semiconductors (ICPS-30), JUL 25-30, 2010, Seoul, SOUTH KOREA Abbreviated Journal  
  Volume Issue Pages 1-2  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We characterize and model the single-particle energy level position and resonant current strength at a three-level crossing in a coherent mixer composed of two weakly coupled vertical quantum dots. In addition to clear anticrossing behavior, an otherwise strong resonance is completely extinguished at the center of the crossing. Despite the strong variation in energy level position and resonant current strength throughout the crossing region, the resonance widths and the sum of the branch currents are found to be approximately constant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000301053000453 Publication Date 2011-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 1399 Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113070 Serial 314  
Permanent link to this record
 

 
Author Petrovic, M. url  openurl
  Title (up) Characterization of scanning gate technique and transport in nanostructured graphene Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:144015 Serial 4590  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Prassides, K.; Michel, K.H. doi  openurl
  Title (up) Charge transfer and polymer phases in AC60 (A=K, Rb, Cs) fullerides Type A1 Journal article
  Year 1998 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 108 Issue Pages 4912-4923  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000072588400025 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.965; 1998 IF: 3.147  
  Call Number UA @ lucian @ c:irua:23985 Serial 338  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: