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We show that bulk semiconductor materials do not allow perfectly complementary p- and

n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When

tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement

results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the

most promising TFET materials, phonon-assisted tunneling to this subband degrades the

subthreshold swing and leads to at least 10� smaller on-current than the desired ballistic

on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling

orthogonal to the gate, made out of InP, In0.53Ga0.47As, InAs, and a modified version of

In0.53Ga0.47As with an artificially increased conduction-band density-of-states. We further show

that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based

inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For

p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a

tensily strained line-tunneling configuration. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891348]

As transistors are further scaled, the optimization of

conventional metal-oxide-semiconductor field-effect-transis-

tors (MOSFETs) becomes more and more challenging.

Especially the MOSFET’s power dissipation problem has

resulted in the identification of steep-slope devices of which

the tunnel-FET (TFET) is the most promising.1,2 Carrier

injection in TFET is based on band-to-band tunneling

(BTBT), and the electrostatic profile at the source (injection)

side is such that the injection of part of the hotter carriers is

prohibited, resulting in an abrupt on-off switching with sub-

60 mV/dec swing.3 To provide sufficiently high on-current

Ion, a small effective bandgap in the BTBT injection region

is required. This can be realized with either small-bandgap

materials or heterojunctions.4 The Ion can also be boosted by

optimizing the architecture. A line-TFET architecture has

improved performance over a conventional p-i-n architec-

ture, even when pockets are included in the latter.5

A key requirement to maintain manageable static leak-

age, in practical transistor implementations, is the availabil-

ity of a complementary setup, consisting of a p- and n-TFET.

Today, only a limited number of experimental p-TFETs have

been realized, such that a thorough evaluation of comple-

mentarity is difficult.1,6–10 However, direct-bandgap IIIV p-

TFETs are not expected to reach the same performance (Ion

for a given supply voltage Vdd and off-current Ioff) as their

complementary n-TFETs because of the low density-of-

states (DOS) in the conduction band (CB) of these materials,

which implies a correspondingly low optimal n-type doping

level.11 This difference can be traced back to the band struc-

ture of a direct-bandgap semiconductor which is not fully

complementary at zone-center: there is one lowest energy

CB, but there are two degenerate highest energy valence

bands (VBs), in particular a light-hole (lh) and a heavy-hole

(hh) VB. The latter is beneficial for n-TFET by providing a

large DOS in the VB,11 and by analogy, the best material for

p-TFET should have a nearby “heavy” indirect bandgap, like

GaSb. However, the hh-band also negatively impacts the p-

TFET performance as will be outlined in this manuscript.

A crucial distinction between the lh- and hh-VB is that

the latter does not couple to the lowest energy CB at zone-

center, as can be proven in bulk based on unit cell symmetry

properties.12 Intuitively, the CB s-like wavefunction jSi cou-

ples to each VB p-like wavefunction jXi; jYi; jZi only in 1

direction ðhSjpjXi ¼ hSjpxjXiÞ, with p the momentum opera-

tor. This implies only 1 lh-VB. Ballistic tunneling between

the hh-band and the CB is therefore not possible, but

phonon-assisted tunneling can exist.13 So far, no theoretical

study has included phonon-assisted tunneling in a TFET con-

figuration where the highest-energy VB is hh-like in the tun-

neling direction. For configurations like strongly confined

nanowires (NWs), the highest-energy VB couples to the

lowest-energy CB at zone-center in the direction of the NW

axis. In TFETs consisting of these confined NWs or tubes,

with tunneling nearly perfectly along the central axis, the

phonon-assisted current is predicted to only contribute to

increased off-current.14–16 However, in today’s larger-size

experimental TFETs, the tunneling direction is not fully paral-

lel to the gate dielectric; and therefore, also tunneling along a

direction where the highest-energy VB has hh-like properties is

possible. The resulting hh-contribution affects the performance

of the p-TFET and the complementarity of TFET in general.

To highlight the impact of the hh-band, a TFET configu-

ration with tunneling orthogonal to the gate is chosen (see

line-TFET in Fig. 1).17 In this direction, the field-induced

quantum confinement (FIQC) removes the band degeneracy

and brings the hh-band at higher energy than the lh-banda)Electronic mail: anne.verhulst@imec.be.
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(see Fig. 2). The position of the subbands is based on a one-

band Schr€odinger solver with non-parabolicity correction.

The assignment of lh- and hh-band is justified by the model-

ing work on strongly confined NWs15,16 as well as quantum

wells (QWs)18 which show pure hh- or lh-like behavior at

zone-center. Even though away from zone-center, the top-

most band is no longer purely hh-like as it gets admixtures

of orbitals coupling to the CB, in this manuscript, the full

subband is assumed to be hh-like. This assumption seems

justified based on the experimental work on optical transi-

tions in QWs with the electric field in the confinement direc-

tion, whereby it is noted that the absorption contribution of

the top-most hh-like band is negligible.18 Transitions

between the hh- and conduction band can therefore only be

made via phonon-assisted tunneling.13

The most promising materials for TFETs are IIIV

direct-bandgap materials because of the abundance of

lattice-matched heterostructures and the high direct BTBT

rates. Even though heterostructures give the best perform-

ance,10 homostructure InP, In0.53Ga0.47As, and InAs TFETs

are used to illustrate the hh-band impact.20 To also provide

predictions for a p-TFET which does not suffer from the

low-eDOS subthreshold swing (SS) degradation, an artificial

material with a “heavy-electron” CB is included (Fig. 3; this

material is close to GaSb, with its indirect CB edge at

84 meV above its direct one20).

Two simulators are combined to assess the impact of the

hh-band on the TFET input characteristics (Fig. 4): one sim-

ulator for the ballistic BTBT current and another for the

phonon-assisted BTBT current calculations, while a one-

band 1-dimensional (1D) Schr€odinger solver with non-

parabolicity correction converts I-V curves as needed into

quantum-mechanical (QM) solutions including non-

parabolicity. The first simulator is semi-classical. It self-

consistently solves the Poisson- and drift-diffusion equations

with a non-local BTBT model.21 The latter is a modification

of Kane’s model implemented with path integrations.

Material descriptions include non-parabolicity. Because of

the absence of appropriate quantization, the obtained I–V
curve is voltage-shifted with the FIQC shift17 calculated

based on the one-band solver.

The second simulator is a 2D QM simulator22 which sol-

ves the Poisson-Schr€odinger equation self-consistently and

calculates the non-local phonon-assisted BTBT current

according to the formalism of Ref. 13. The electron-phonon

(e-ph) coupling in Ref. 13 is the deformation potential inter-

action representative for group IV materials. In this article, it

is replaced with the in IIIV materials typically stronger polar

coupling.12

Polar couplings are induced by optical phonons in a lat-

tice of differently charged ions. The corresponding e-ph

interaction Hamiltonian He-ph is

He-ph ¼
X
ll0~k

gvlcl0~k b†
l cl 0 ða~k þ a†

�~kÞ þ herm: conj:; (1)

with coupling strength gvlcl0~k :

FIG. 1. Schematic of double-gate (DG) pocketed line-TFET. Gate-drain

underlap is applied to decrease the ambipolar current.19 The white arrows

indicate the tunneling direction.

FIG. 2. Electrostatic profile in the source along AA0 of Fig. 1 for a 3 nm

pocket In0.53Ga0.47As TFET. The top-most VB subband is hh-like.

FIG. 3. Bandstructure of artificial high-eDOS In0.53Ga0.47As, allowing

steeper SS in p-TFET: a “heavy-electron”-band (with hh mass) is added to

the In0.53Ga0.47As bandstructure.

FIG. 4. Simulated input characteristics for (a) InP, (b) InGaAs, (c) InAs, and

(d) high-eDOS InGaAs pocketed line-TFETs, tpocket¼ 3 nm, Vds¼�0.5 V,

and WF¼ 5 eV. Note that a vertically flipped version of the ballistic current

curve of (d) is representative for an n-type InGaAs pocketed line-TFET.
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gvlcl0~k ¼ Mk

ð
�

d3r /�vlð~rÞ exp ði~k:~rÞ/cl 0 ð~rÞ; (2)

with bulk coupling strength Mk:

Mk ¼
1

k�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pe2�hxLO

1

�1
� 1

�0

� �s
; (3)

with v (c) VB (CB), bl and cl0 are the electron annihilation

operators in VB and CB states, l and l0, respectively, a~k ða
†
~k
Þ

the annihilation (creation) operator of a phonon with wave-

vector ~k; /vlð~rÞð/cl0 ð~rÞÞ the electron VB (CB) wavefunc-

tions, � is the total semiconductor volume, e is the

elementary charge, �h is the reduced Planck constant, xLO is

the longitudinal optical (LO) phonon frequency, and �1 (�0)

is the high-frequency (static) dielectric constant. To obtain a

computationally manageable calculation, an average cou-

pling strength Mkav
is used. A back-of-the-envelope calcula-

tion shows that a good average value is obtained for a

wavevector of half the largest relevant k. Very large phonon

wavevectors are not relevant, since the effective bandgap for

BTBT becomes too large. The value of kav ¼ 0:05� 2p=a0,

with a0 the lattice constant, is chosen to determine Mkav
.

Table I lists kav and Mkav
� �1=2 for the 3 materials used in

this article.20

The phonon-assisted QM solver of Ref. 13 is further

based on the effective mass approximation. Since the non-

parabolicity of the CB is typically significant in IIIV materi-

als,23 the gate-source voltage Vgs required for alignment of

the hh-subband level to the electron Fermi level will be over-

estimated and the correspondingly larger electric field will

result in current-overestimation too. The following linear

interpolation and current rescaling is performed to extract

the “non-parabolic” input characteristics. Based on a one-

band Schr€odinger solver, the electrostatic potential profile

orthogonal to the gate is determined for 6 predefined ener-

getic distances between the hh-subband level and the elec-

tron Fermi level or CB edge in the source. The 6 conditions

range from onset of BTBT at overlap of the hh-subband to

the CB (condition of Fig. 2) to alignment of the hh-subband

to the electron Fermi level in the source. Two parameters are

extracted for the 6 conditions and for both the parabolic and

non-parabolic CB assumption: the maximum electric field

Emax in the source and Vgs. A linear interpolation of the Vgs

values is performed, combined with a rescaling of the current

values proportional to the tunneling rate at uniform Emax

I � E2:5
max exp ð�BBTBT=EmaxÞ; (4)

with BBTBT a material-dependent tunneling parameter.24

This Emax-based simplified rescaling results in an overesti-

mation of the phonon-assisted hh-based current.

The line-TFET predictions are shown in Fig. 4 for a con-

figuration with a 3 nm pocket. An observable current to the

hh-subband adds to the desired ballistic tunneling current for

all materials. The total current achieved in a given voltage

window Vdd starting at Vonset (@Ioff¼ 50 pA/lm) is smaller

than if only lh-based current were present. For example, in

Fig. 4(d), taking Vdd¼ 0.5 V, the current-prediction based on

the ballistic component only is about 200 lA/lm

(Vonset��0.8 V), while the prediction when both phonon-

based and ballistic currents are taken into account is about

20 lA/lm (Vonset��0.4 V), with a corresponding I60 degra-

dation from 5 lA/lm to 1 lA/lm.3 The hh-based current

therefore degrades the TFET’s input characteristics. The

shift of the hh-current with respect to the lh-current is larger

for materials with smaller masses, despite the smaller band-

gaps and hence smaller required band bendings. The shift is

also larger for thinner pockets, due to the increased FIQC,

but the impact is limited (�100 mV shift decrease for 5 nm

pocket TFETs). The shift for high-eDOS In0.53Ga0.47As is

smaller than for In0.53Ga0.47As due to the smaller electric

fields at turn-on and hence the smaller FIQC.

If the assumption that the hh-band is not coupled to the

CB beyond zone-center is removed, then it is to be expected

that the ballistic current can start closely beyond the onset of

phonon-assisted tunneling. For transitions to the hh-like

band, the hh-based (phonon-assisted) component is expected

to remain dominant, but an lh-based (ballistic as well as pho-

non-assisted) component will also appear. Overall, the

impact of orbital mixing is therefore expected to be a

smoothening of the I-V characteristics compared to the in

Fig. 4 presented sum of the purely lh-based ballistic current

and the purely hh-based phonon-assisted current.

The presence of a hh-like subband as top-most VB is

also problematic for direct-bandgap materials with negligible

phonon-assisted tunneling, e.g., tensile strained (non-polar)

Ge. This is illustrated with a full QM solver, such that ener-

getic positions of hh- and lh-subbands are properly incorpo-

rated. Because of solver restrictions, the illustration can not

be done for phonon-assisted hh-based current versus ballistic

lh-current, but is done versus phonon-assisted lh-based cur-

rent (Fig. 5), which is representative as well for illustrating

TABLE I. Reduced average bulk polar coupling strength Mkav
� �1=2.

InP InGaAs InAs

kav ðm�1Þ 5.4� 108 5.4� 108 5.2� 108

Mkav
� �1=2 ðJm3=2Þ 3.2� 10�33 2.2� 10�33 2.2� 10�33

FIG. 5. Simulated I-V curves for a high-eDOS InGaAs line-TFET with 3 nm

pocket. A parabolic band assumption is used for the lh band. The decrease

of current with decreasing jVdsj is larger for lh-based than for hh-based

current.
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the hh-based level pinning. To have observable lh-based cur-

rents and since the pinning impact is independent of the

magnitude of the phonon-assisted current, polar high-eDOS

InGaAs is used in Fig. 5. Note that the phonon-assisted lh-

based current is not added to Fig. 4 as it is always smaller

than the ballistic lh-based current. As shown in Fig. 5, when

jVdsj decreases, the lh-based current decreases more strongly

than the hh-based current. This is because an inversion layer

builds up in the hh-subband, limiting band bending in the

semiconductor, once the hh-subband edge is energetically

close to the hole Fermi level, with the latter set by the p-type

drain voltage. The energetic distance from the lh-subband

level to the source electron Fermi level is therefore pinned

by the hole Fermi level in the hh-subband, such that lh-

BTBT is suppressed. From jVdsj ¼ 1V to jVdsj ¼ 0:5V, part

of the lh-based current decrease is due to inefficient tunnel-

ing into partially filled CB states. At jVdsj ¼ 0:3V, overlap

between the lh-subband and the CB is marginal, which is

reflected in the strong deterioration of the lh-based current.

This pinning of the band bending and the resulting decrease

of the lh-based current is not included in Fig. 4. The overall

impact of the hh-band is therefore even worse than antici-

pated by Fig. 4.

Heterostructure stacks of large-bandgap materials can

help to increase the CB DOS while maintaining favorable

tunneling rates. However, heterostructure line-TFETs25 suf-

fer from the same parasitics as the presented homostructure

line-TFETs. In the tunneling direction, which is the confine-

ment direction of the thin hetero-material, the top-most VB

has hh-properties and no ballistic CB coupling.

In confined NWs, however, tunneling happens parallel

to the gate. In this direction, the top-most VB couples ballis-

tically to the CB.15 Tensile strain along the NW axis enhan-

ces this favorable band alignment.16 Biaxial tensile strain

can also be applied to line-TFET configurations to create a

top-most VB in the direction of tunneling which couples bal-

listically to the CB.

In conclusion, in TFET architectures in which BTBT is

oriented towards the gate dielectric, direct-bandgap p-TFETs

perform worse than n-TFETs. We have shown that a para-

sitic phonon-assisted tunneling component appears a few

100 mV before the desired ballistic tunneling component

onset in such IIIV p-TFETs, with no equivalent of this phe-

nomenon in n-TFETs. The onset of this parasitic current

with respect to the onset of the desired current is larger with

decreasing bandgap and effective masses and with increasing

FIQC. Even if non-polar (non-IIIV) materials are used, such

that the phonon-assisted current becomes negligible, the

desired ballistic lh-based current degrades and for supply

voltages below 0.3 V may become negligible, due to the hh-

band presence. The ideal material in the BTBT injection

region of a p-TFET has a large DOS in the CB and its top-

most VB at onset of tunneling couples ballistically to the

CB. Future p-TFET designs should therefore be limited to

strongly confined n-i-p or n-p-i-p TFETs or biaxially tensily

strained line-TFETs, by preference with heterostructures in

the BTBT region.
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